Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed Dec 2019

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

The intrinsic link between long-range order, coordination geometry, and the electronic properties of a system must be understood in order to tailor function-specific materials. Although material properties are typically tailored using chemical dopants, such methods can cause irreversible changes to the structure, limiting the range of functionality. The application of high pressure may provide an alternative “clean” method to tune the electronic properties of semiconducting materials by tailoring their defect density and structure.

We have explored a number of optoelectronic relevant materials with promising characteristics, specifically Sn-(O,N) compounds which have been predicted to undergo pressure-mediated opening of their optical band …


Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks Aug 2019

Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis presents an original open-source Python package called PyXtal (pronounced "pi-crystal") that generates random symmetric crystal structures for use in crystal structure prediction (CSP). The primary advantage of PyXtal over existing structure generation tools is its unique symmetrization method. For molecular structures, PyXtal uses an original algorithm to determine the compatibility of molecular point group symmetry with Wyckoff site symmetry. This allows the molecules in generated structures to occupy special Wyckoff positions without breaking the structure's symmetry. This is a new feature which increases the space of search-able structures and in turn improves CSP performance.

It is shown that …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …