Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Engineering

Theses/Dissertations

Institution
Keyword
Publication

Articles 1 - 30 of 75

Full-Text Articles in Physics

Structure And Dynamics Of High Temperature Superconductors, Jennifer Lynn Niedziela Dec 2012

Structure And Dynamics Of High Temperature Superconductors, Jennifer Lynn Niedziela

Doctoral Dissertations

High temperature superconductivity in iron based compounds has presented a series of complex problems to condensed matter physics since being discovered in 2008. The stalwart basis of condensed matter physics is the “strength in numbers" aspect of crystalline periodicity. Perfect crystalline periodicity has made possible the reduction of the questions of structural and electronic properties to single dimensions, increasing the tractability of these problems. Nevertheless, modern complex materials stretch these assumptions to their limits, and it is at this point where our work starts. Using neutron and x-ray scattering, we have conducted a series of studies on the structural disorder …


Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert Dec 2012

Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert

Doctoral Dissertations

This dissertation concentrates on the introduction of Predictive Adaptive Radiation Therapy (PART) as a potential method to improve cancer treatment. PART is a novel technique that utilizes volumetric image-guided radiation therapy treatment (IGRT) data to actively predict the tumor response to therapy and estimate clinical outcomes during the course of treatment. To implement PART, a patient database containing IGRT image data for 40 lesions obtained from patients who were imaged and treated with helical tomotherapy was constructed. The data was then modeled using locally weighted regression. This model predicts future tumor volumes and masses and the associated confidence intervals based …


Evaluation Of Tagging Techniques Gamma-Decay Probabilities Using The Surrogate Method, Timothy Lee Reed Dec 2012

Evaluation Of Tagging Techniques Gamma-Decay Probabilities Using The Surrogate Method, Timothy Lee Reed

Masters Theses

A detailed analysis of the statistical and discrete [gamma]-decay tagging techniques was conducted using the absolute surrogate and surrogate ratio method (SRM) to obtain the 92Mo(n,[gamma]) cross section in an equivalent neutron energy range of 80 to 880 keV. Excited 93Mo and 95Mo nuclei were populated using (d,p) reactions on 92Mo and 94Mo targets, respectively. The absolute surrogate 92Mo(n,[gamma]) cross sections disagreed with evaluated neutron capture cross section data by as much as a factor of 4 using the statistical tagging approach, whereas the discrete [gamma]-decay tag absolute surrogate cross section disagreed with the evaluated neutron capture cross section by …


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Novel Production Techniques Of Radioisotopes Using Electron Accelerators, Daniel Robert Lowe Dec 2012

Novel Production Techniques Of Radioisotopes Using Electron Accelerators, Daniel Robert Lowe

UNLV Theses, Dissertations, Professional Papers, and Capstones

Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope …


Hybrid Plasmonic Nanoantennas: Fabrication, Characterization, And Application, Shengjie Zhai Dec 2012

Hybrid Plasmonic Nanoantennas: Fabrication, Characterization, And Application, Shengjie Zhai

UNLV Theses, Dissertations, Professional Papers, and Capstones

As optical counterpart of microwave antennas, plasmonic nanoantennas are important nanoscale devices for converting propagating optical radiation into confined/enhanced electromagnetic fields. Presently, nanoantennas, with a typical size of 200-500 nm, have found their applications in bio-sensing, bio-imaging, energy harvesting, and disease cure and prevention. With the device feature size of next generation IC goes down to 22 nm or smaller, and biological/chemical sensing reaches the Gene’s level, the sizes of the corresponding nanoantennas have to be scaled down to sub-100nm level. In the literature, these sub-100nm nanoantennas are referred as deep subwavelength nanoantennas as size of such miniaturized nanoantennas is …


P3ht:Pcpdtbt:Pcbm Multi- Polymer Single Layer Solar Cells, Ted Andreas Nov 2012

P3ht:Pcpdtbt:Pcbm Multi- Polymer Single Layer Solar Cells, Ted Andreas

Physics

OPV efficiencies are limited by their narrow absorption; rather than using tandem architecture to overcome this obstacle, our group combined P3HT and PCPDTBT into a single layer BHJ solar cell that achieved 2.0% PCE. This is 33% higher than the pure P3HT control from this group, proving that multi-polymer solar cells have the potential to outperform their single-polymer components.


Modeling Martian Planetary Entry Descent And Landing Using Monte Carlo Driven Response Surface Methodology, Narcrisha S. Norman Oct 2012

Modeling Martian Planetary Entry Descent And Landing Using Monte Carlo Driven Response Surface Methodology, Narcrisha S. Norman

Mechanical & Aerospace Engineering Theses & Dissertations

Response surface methodology (RSM) is a statistical method that explores the relationships between several descriptive variables and one or more response variables. For over sixty years, among other areas, it has been utilized in quality engineering, process engineering, aircraft engineering, economics, chemical engineering, automotive engineering and design/technique optimization. In this dissertation, RSM is utilized to produce regression models that represent the planetary entry, descent and landing (EDL) process. A complete understanding of EDL process is an essential component of any planetary exploration. Research in this area is ongoing and confidence in the ability to explore known celestial bodies is growing. …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Secondary Light Particle Data Base Development Using A Thermodynamic Coalescence Model, Mahmoud Pourarsalan Aug 2012

Secondary Light Particle Data Base Development Using A Thermodynamic Coalescence Model, Mahmoud Pourarsalan

Doctoral Dissertations

ABSTRACT

As heavy ions are transported through shielding and interact with shielding materials accurate values of total, elastic scattering, reactions cross sections and angular distributions of the emitted nucleons, light high energy particles such as deuteron, triton, helion, alpha particles and other heavy ions are required in order to design appropriate and adequate shielding to protect the human crews and instruments from ionizing radiations during long duration space missions. Double-differential (energy and angle) light energetic particle production cross sections must be known for ion energies from tens of MeV/nucleon to tens of GeV/nucleon for all emitted light energetic particles for …


Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki Aug 2012

Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki

Theses and Dissertations

Diabetic Nephropathy (DN) is the major single cause of end stage renal diseases (ESRD) in the United States. Diabetes is the third leading fatal disorder after cancer and heart disease. It is affecting 8.3% of the residents of the United States, with a total healthcare cost of $174 billion/yr by 2010.

There currently exists a need for a sensitive and specific diagnosis for temporal detection of oxidative stress (OS) in cellular metabolic levels, which plays an early role in the development of DN. The objective of this research is to use a fluorescence optical imaging technique in order to delineate …


Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato Aug 2012

Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato

Doctoral Dissertations

Synthesis of well-defined nanostructures by pulsed laser melting is an interesting subject from both a funda- mental and technological point of view. In this thesis, the synthesis and functional properties of potentially useful materials were studied, such as tin dioxide nanostructured arrays, which have potential applications in hydrogen gas sensing, and ferromagnetic Co nanowire and nanomagnets, which are fundamentally im- portant towards understanding magnetism in the nanoscale. First, the formation of 1D periodic tin dioxide nanoarrays was investigated with the goal of forming nanowires for hydrogen sensing. Experimental obser- vations combined with theoretical modeling successfully explained the mechanisms of structure …


An Extension To Particle Polarizability To Predict Coupling Behavior In Periodic Nanoplasmonic Arrays, Drew Dejarnette Aug 2012

An Extension To Particle Polarizability To Predict Coupling Behavior In Periodic Nanoplasmonic Arrays, Drew Dejarnette

Graduate Theses and Dissertations

Plasmonic nanoparticles organized in arrays interact to create spectral patterns which are amplified by individual particle polarizability. It was hypothesized that particle polarizability could be used as a predictor of spectral behavior from far-field interactions within the array. Inter-particle coupling produced an extraordinary peak in extinction efficiency at wavelengths equal to or larger than the single particle plasmon resonance peak. Interactions that produced constructive coupling were found to mimic changes in the particle polarizability model. Testing of the hypothesis was performed using the coupled dipole approximation with parametric characterization of array geometries, giving specific particle size and lattice constant combinations …


Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev Aug 2012

Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev

All Dissertations

This Dissertation is focused on the development of new methods for characterization and control of fluid rheology using magnetic nanorods. This Dissertation consists of five chapters. In the first chapter, we review current microrheologial methods and develop a Magnetic Rotational Spectroscopy (MRS) model describing nanorod response to a rotating magnetic field. Using numerical modeling, we analyze the effects of materials parameters of nanorods and fluids on the MRS characteristic features. The model is designed for a specific experimental protocol. We introduce and examine physical parameters which can be measured experimentally. The model allows identification of MRS features enabling the calculation …


Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe Aug 2012

Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe

Graduate Theses and Dissertations

A first-principles-based effective Hamiltonian scheme which incorporates coupling between ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3 alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO) soft mode) in the 50-75 cm-1 range for temperatures smaller than 200 K and for compositions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered FE and AFD motions is shown to be the cause of the additional mode and more insight into its nature is provided. This scheme is further used to reveal a field-induced anticrossing involving FE and AFD degrees of …


Basic Research On The Characteristics Of A Constricted Pulsed Glow Discharge, Sean Daniel Andersen Aug 2012

Basic Research On The Characteristics Of A Constricted Pulsed Glow Discharge, Sean Daniel Andersen

UNLV Theses, Dissertations, Professional Papers, and Capstones

In certain plasma discharge experiments, it has been observed that under specific conditions a plasma glow discharge column tends to seek the central location of the discharge electrodes away from the electrode edges and chamber walls. Further, the column appears to have the properties of a stabilized equilibrium plasma pinch in a glow (non-arc-like) state. This is unusual since, normally field enhancements occur on edges resulting in arc-like discharge breakdown. Also, the column of plasma that protrudes from the anode emits highly intense, non-uniform light that is uncharacteristically bright for a glow discharge.

The main purpose of this thesis is …


The Double Pendulum: Construction And Exploration, Benjamin J. Knudson Jul 2012

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson

Physics

The exploration of a nonlinear mechanical system, the Double Pendulum, a physical pendulum on the end of a physical pendulum, using analytic and experimental approaches. Also included discussion of the design and construction of the Double Pendulum apparatus to work with Vernier LabPro and LoggerPro. The apparatus outputs live data of the angles to a LoggerPro which collects and produces time evolution graphs as well as a corresponding animation lending itself to comparison with theoretical models. Normal mode frequencies are found both analytically and experimentally for the the general (real) double pendulum. Examples of both simple (periodic) and complex (chaotic) …


Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata Jul 2012

Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata

Physics Theses & Dissertations

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the …


Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi Jun 2012

Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi

Electronic Thesis and Dissertation Repository

The dependence of the magnetic hardness on the microstructure of magnetic solids is investigated, using a field theoretical approach, called the Magnetic Phase Field Crystal model. We constructed the free energy by extending the Phase Field Crystal (PFC) formalism and including terms to incorporate the ferromagnetic phase transition and the anisotropic magneto-elastic effects, i.e., the magnetostriction effect. Using this model we performed both analytical calculations and numerical simulations to study the coupling between the magnetic and elastic properties in ferromagnetic solids. By analytically minimizing the free energy, we calculated the equilibrium phases of the system to be liquid, non-magnetic …


Cross Hallway Detection And Indoor Localization Using Flash Laser Detection And Ranging, Istvan M. Prileszky Jun 2012

Cross Hallway Detection And Indoor Localization Using Flash Laser Detection And Ranging, Istvan M. Prileszky

Theses and Dissertations

A flash LADAR is investigated as a source of navigation information to support cross-hallway detection and relative localization. To accomplish this, a dynamic, flexible simulation was developed that simulated the LADAR and the noise of a LADAR system. Using simulated LADAR data, algorithms were developed that were shown to be effective at detecting cross hallways in simulated ideal environments and in simulated environments with noise. Relative position was determined in the same situations. A SwissRanger SR4000 flash LADAR was then used to collect real data and to verify algorithm performance in real environments. Hallway detection was shown to be possible …


Implementation Of Branch-Point-Tolerant Wavefront Reconstructor For Strong Turbulence Compensation, Michael J. Steinbock Jun 2012

Implementation Of Branch-Point-Tolerant Wavefront Reconstructor For Strong Turbulence Compensation, Michael J. Steinbock

Theses and Dissertations

Branch points arise in optical transmissions due to strong atmospheric turbulence, long propagation paths, or a combination of both. Unfortunately, these conditions are very often present in desired operational scenarios for laser weapon systems, optical communication, and covert imaging, which suffer greatly when traditional adaptive optics systems either cannot sense branch points or implement non-optimal methods for sensing and correcting branch points. Previous research by Pellizzari presented a thorough analysis of various novel branch point tolerant reconstructors in the absence of noise. In this research a realistic model of the Air Force Institute of Technology's adaptive optics system is developed …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson Jun 2012

Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson

Physics

Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of these devices, and found that it may be possible for polymers to assist each other with charge extraction, though combining polymers disrupts single polymer crystallinity.


Inductive Metal Identification, Paul Maggi Jun 2012

Inductive Metal Identification, Paul Maggi

Electrical Engineering

This project focuses on creating a device to differentiate between various types of metals via magnetic induction. Magnetic induction is used because it is both non-optical and non-contact. It achieves this by generating a varying magnetic field, which induces eddy currents in the metal. These eddy currents produce small disturbances in the surrounding magnetic field, which can be sensed with Hall Effect Sensors (HES). The primary challenge in this project was generating a sufficiently strong magnetic field to detectable disturbances. In order to achieve better results, a stronger magnetic field must be used as well as more sensitive Hall Effect …


Day/Night Band Imager For A Cubesat, Eric Stanton Jun 2012

Day/Night Band Imager For A Cubesat, Eric Stanton

Electrical Engineering

Day/Night Band (DNB) earth sensing and meteorological systems like the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provide visible wavelength imagery 24 hours a day that is used primarily for cloud imaging in support of weather forecasting. This paper describes a compact push-broom imager that meets low light imaging requirements for DMSP OLS and the NOAA/NASA Joint Polar Satellite System (JPSS) as documented in the Integrated Operational Requirements Document [1] (IORD) including the imager design, system level concepts of operation for data collection, radiometric and spatial calibration, and data transmission to Earth. This small, lightweight imager complies with …


Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall May 2012

Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall

Electronic Thesis and Dissertation Repository

The hybridization of magnetic resonance imaging (MRI) with positron emission tomography (PET) or single photon emission computed tomography (SPECT) enables the collection of an assortment of biological data in spatial and temporal register. However, both PET and SPECT are subject to photon attenuation, a process that degrades image quality and precludes quantification. To correct for the effects of attenuation, the spatial distribution of linear attenuation coefficients (μ-coefficients) within and about the patient must be available. Unfortunately, extracting μ-coefficients from MRI is non-trivial. In this thesis, I explore the problem of MRI-based attenuation correction (AC) in emission tomography.

In particular, I …


Agent-Based Modeling Of Emergency Building Evacuation, Vi Q. Ha May 2012

Agent-Based Modeling Of Emergency Building Evacuation, Vi Q. Ha

Master's Theses

Panic during emergency building evacuation can cause crowd stampede, resulting in serious injuries and casualties. Agent-based methods have been successfully employed to investigate the collective human behavior during emergency evacuation in cases where the configurational space is extremely simple - usually one rectangular room - but not in evacuations of multi-room or multi-floor buildings. This implies that the effect of the complexity of building architecture on the collective behavior of the agents during evacuation has not been fully investigated. Here, we employ a system of self-moving particles whose motion is governed by the social-force model to investigate the effect of …