Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Physics

Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin Dec 2012

Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin

Andrew Wesolek

This exhibition, presented in the Merrill-Cazier Library, captured the history and accomplishments of the GAS program. Click the download button to see a PowerPoint presentation featuring images and text from the exhibition.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar

Srinivas Sridhar

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Yung Joon Jung

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Donald Heiman

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon

Latika Menon

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar

Latika Menon

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

In this paper, we describe our floating-gate pFET device, with its many circuit applications and supporting experimental measurements. We developed these devices in standard double-poly CMOS technologies by utilizing many effects inherent in these processes. We add floating-gate charge by electron tunneling, and we remove floating-gate charge by hot-electron injection. With this floating-gate technology, we cannot only build analog EEPROMs, we can also implement adaptation and learning when we consider floating-gate devices to be circuit elements with important time-domain dynamics. We start by discussing non-adaptive properties of floating-gate devices and we present two representative non-adaptive applications. First, we discuss using …


A Long-Channel Model For The Asymmetric Double-Gate Mosfet Valid In All Regions Of Operation, Abhishek Kammula, Bradley Minch Jul 2012

A Long-Channel Model For The Asymmetric Double-Gate Mosfet Valid In All Regions Of Operation, Abhishek Kammula, Bradley Minch

Bradley Minch

We present a physically based, continuous analytical model for long-channel double-gate MOSFETs. The model is particularly well suited for implementation in circuit simulators due to the simple expressions for the current andthe continuous nature of the derivatives of the current which improves convergence behavior.


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora Jul 2012

Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora

Dr. Et-touhami Es-sebbar

This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an …


Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen Jun 2012

Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen

Albert B Chen

Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators, …


Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach Jun 2012

Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach

Dr. Et-touhami Es-sebbar

Photoionization of diacetylene was studied using synchrotron radiation over the range 8–24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron–photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IEad = (10.17 ± 0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE = (16.15 ± 0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions , C3H+, and C2H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene …


Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii May 2012

Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii

George H Baker

EMP and solar storm wide geographic coverage and ubiquitous system effects beg the question of “Where to begin?” with protection efforts. Thus, in addressing these “wide area electromagnetic (EM) effects,” we must be clever in deciding where to invest limited resources. Based on simple risk analysis, the electric power and communication infrastructures emerge as the highest priority for EM protection. Programs focused on these highest risk infrastructures will go a long way in lessoning societal impact. Given the national scope of the effects, such programs must be coordinated at the national level but implemented at local level. Because wide-area EM …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …


Magnetic Properties And Short-Range Structure Analysis Of Granular Cobalt Silicon Nitride Multilayers, Félix Jiménez-Villacorta, A. Espinosa, E. Cespedes, C. Prieto Apr 2012

Magnetic Properties And Short-Range Structure Analysis Of Granular Cobalt Silicon Nitride Multilayers, Félix Jiménez-Villacorta, A. Espinosa, E. Cespedes, C. Prieto

Felix Jiménez-Villacorta

The magnetic properties and local order of cobalt/silicon nitride metal-insulator multilayered system have been studied. Magnetization characterization reveals an evolution of the magnetic features by varying the metal layer thickness. Results show that multilayers with larger metal thickness (t) present a pure ferromagnetic character, whereas samples with t  < 2 nm exhibit a granular superparamagnetic behavior, as it corresponds to discontinuous metal-insulator materials. An important decrease in the magnetization values for the clustered samples has also been observed. X-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) at the Co K-edge have been used to determine the …


Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr Mar 2012

Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr

Brian Storey

We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity—sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.


A Depth-Averaged Electrokinetic Flow Model For Shallow Microchannels, Hao Lin, Brian D. Storey, Juan G. Santiago Mar 2012

A Depth-Averaged Electrokinetic Flow Model For Shallow Microchannels, Hao Lin, Brian D. Storey, Juan G. Santiago

Brian Storey

Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy–Brinkman–Forchheimer-type …


Instability Of Electro-Osmotic Channel Flow With Streamwise Conductivity Gradients, Jose Santos, Brian D. Storey Mar 2012

Instability Of Electro-Osmotic Channel Flow With Streamwise Conductivity Gradients, Jose Santos, Brian D. Storey

Brian Storey

This work considers the stability of an electro-osmotic microchannel flow with streamwise electrical conductivity gradients, a configuration common in microfluidic applications such as field amplified sample stacking. Previous work on such flows has focused on how streamwise conductivity gradients set a nonuniform electro-osmotic velocity which results in dispersion of the conductivity field. However, it has been known for many years that electric fields can couple with conductivity gradients to generate unstable flows. This work demonstrates that at high electric fields such an electrohydrodynamic instability arises in this configuration and the basic mechanisms are explored through numerical simulations. The instability is …


Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant Mar 2012

Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant

Brian Storey

The current theory of alternating-current electro-osmosis (ACEO) is unable to explain the experimentally observed flow reversal of planar ACEO pumps at high frequency (above the peak, typically 10–100 kHz), low salt concentration (1–1000 μM), and moderate voltage (2–6 V), even taking into account Faradaic surface reactions, nonlinear double-layer capacitance, and bulk electrothermal flows. We attribute this failure to the breakdown of the classical Poisson-Boltzmann model of the diffuse double layer, which assumes a dilute solution of pointlike ions. In spite of low bulk salt concentration, the large voltage induced across the double layer leads to crowding of the ions and …


Rayleigh-Taylor Instability Of Violently Collapsing Bubbles, Hao Lin, Brian D. Storey, Andrew J. Szeri Mar 2012

Rayleigh-Taylor Instability Of Violently Collapsing Bubbles, Hao Lin, Brian D. Storey, Andrew J. Szeri

Brian Storey

In a classical paper Plesset has determined conditions under which a bubble changing in volume maintains a spherical shape. The stability analysis was further developed by Prosperetti to include the effects of liquid viscosity on the evolving shape modes. In the present work the theory is further modified to include the changing density of the bubble contents. The latter is found to be important in violent collapses where the densities of the gas and vapor within a bubble may approach densities of the liquid outside. This exerts a stabilizing influence on the Rayleigh–Taylor mechanism of shape instability of spherical bubbles. …


Bulk Electroconvective Instability At High Péclet Numbers, Brian D. Storey, Boris Zaltzman, Isaak Rubinstein Mar 2012

Bulk Electroconvective Instability At High Péclet Numbers, Brian D. Storey, Boris Zaltzman, Isaak Rubinstein

Brian Storey

Bulk electroconvection pertains to flow induced by the action of a mean electric field upon the residual space charge in the macroscopic regions of a locally quasielectroneutral strong electrolyte. For a long time, controversy has existed in the literature as to whether quiescent electric conduction from such an electrolyte into a uniform charge-selective solid, such as a metal electrode or ion exchange membrane, is stable with respect to bulk electroconvection. While it was recently claimed that bulk electroconvective instability could not occur, this claim pertained to an aqueous, low-molecular-weight electrolyte characterized by an order-unity electroconvection Péclet number. In this paper, …


Field-Amplified Sample Stacking And Focusing In Nanofluidic Channels, Jess M. Sustarich, Brian D. Storey, Sumita Pennathur Mar 2012

Field-Amplified Sample Stacking And Focusing In Nanofluidic Channels, Jess M. Sustarich, Brian D. Storey, Sumita Pennathur

Brian Storey

Nanofluidic technology is gaining popularity for bioanalytical applications due to advances in both nanofabrication and design. One major obstacle in the widespread adoption of such technology for bioanalytical systems is efficient detection of samples due to the inherently low analyte concentrations present in such systems. This problem is exacerbated by the push for electronic detection, which requires an even higher sensor-local sample concentration than optical detection. This paper explores one of the most common preconcentration techniques, field-amplified sample stacking, in nanofluidic systems in efforts to alleviate this obstacle. Holding the ratio of background electrolyte concentrations constant, the parameters of channel …


Volatile Products Controlling Titan’S Tholins Production, N. Carrasco, T. Gautier, Et. Es-Sebbar, P. Pernot, G. Cernogora Mar 2012

Volatile Products Controlling Titan’S Tholins Production, N. Carrasco, T. Gautier, Et. Es-Sebbar, P. Pernot, G. Cernogora

Dr. Et-touhami Es-sebbar

A quantitative agreement between nitrile relative abundances and Titan’s atmospheric composition was recently shown with a reactor simulating the global chemistry occurring in Titan’s atmosphere [Gautier et al. (2011) Icarus, 213: 625]. Here we present a complementary study on the same reactor using an in-situ diagnostic of the gas phase composition. Various initial N2-CH4 gas mixtures (methane varying from 1 to 10%) are studied, with a monitoring of the methane consumption and of the stable gas neutrals by in-situ mass spectrometry. Atomic hydrogen is also measured by optical emission spectroscopy. A positive correlation is found between atomic hydrogen abundance and …


Capillary Force In High Aspect-Ratio Micropillar Arrays, Dinesh Chandra Feb 2012

Capillary Force In High Aspect-Ratio Micropillar Arrays, Dinesh Chandra

Dinesh Chandra

High aspect-ratio (HAR) micropillar arrays are important for many applications including, mechanical sensors and actuators, tunable wetting surfaces and substrates for living cell studies. However, due to their mechanical compliance and large surface area, the micropillars are susceptible to deformation due to surface forces, such as adhesive force and capillary force. In this thesis we have explored the capillary force driven mechanical instability of HAR micropillar arrays. We have shown that when a liquid is evaporated off the micropillar arrays, the pillars bend and cluster together due to a much smaller capillary meniscus interaction force while still surrounded by a …


Vuv Photoionization Of Acetamide Studied By Electron / Ion Coincidence Spectroscopy In The 8-24 Ev Photon Energy Range, M. Schwell, Y. Bénilan, N. Fray, M.-C Gazeau, Et. Es-Sebbar, Gustavo A. Garcia, L. Nahon, N. Champion, S. Leach Jan 2012

Vuv Photoionization Of Acetamide Studied By Electron / Ion Coincidence Spectroscopy In The 8-24 Ev Photon Energy Range, M. Schwell, Y. Bénilan, N. Fray, M.-C Gazeau, Et. Es-Sebbar, Gustavo A. Garcia, L. Nahon, N. Champion, S. Leach

Dr. Et-touhami Es-sebbar

A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E (12A’) = (9.71±0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 12A”, was determined to be ≈ 10.1 eV. Assignments of the fragment ions and the …


Binary Nanoparticle Dispersed Metamaterial Implementation And Characterization, Han Li Jan 2012

Binary Nanoparticle Dispersed Metamaterial Implementation And Characterization, Han Li

Han Li

No abstract provided.


Angular-Dependences Of Giant In-Plane And Interlayer Magnetoresistances In Bi2te3 Bulk Single Crystals, Zengji Yue Dec 2011

Angular-Dependences Of Giant In-Plane And Interlayer Magnetoresistances In Bi2te3 Bulk Single Crystals, Zengji Yue

Zengji Yue

Angular-dependences of in-plane and interlayer magnetotransport properties in n-type Bi2Te3 bulk single crystals have been investigated over a broad range of temperatures and magnetic fields. Giant in-plane magnetoresistances (MR) of up to 500% and interlayer MR of up to 200% were observed, respectively. The observed MR exhibits quadratic field dependences in low fields and linear field dependences in high fields. The angular dependences of the MR represent strong anisotropy and twofold oscillations. The observed angle-dependent, giant MR might result from the strong coulomb scattering of electrons as well as impurity scattering in the bulk conduction bands of n-type Bi2Te3. The …