Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Photoemission By Large Electron Wave Packets Emitted Out The Side Of A Relativistic Laser Focus, Eric Flint Cunningham Jul 2011

Photoemission By Large Electron Wave Packets Emitted Out The Side Of A Relativistic Laser Focus, Eric Flint Cunningham

Theses and Dissertations

There are at least two common models for calculating the photoemission of accelerated electrons. The 'extended-charge-distribution' method uses the quantum probability current (multiplied by the electron charge) as a source current for Maxwell's equations. The 'point-like-emitter' method treats the electron like a point particle instead of like a diffuse body of charge. Our goal is to differentiate between these two viewpoints empirically. To do this, we consider a large electron wave packet in a high-intensity laser field, in which case the two viewpoints predict measurable photoemission rates that differ by orders of magnitude. Under the treatment of the 'extended-charge-distribution' model, …


Supersymmetric Origins Of The Properties Of Sech-Pulses And Sine-Gordon Solitons, Andrew Phillip Koller Jun 2011

Supersymmetric Origins Of The Properties Of Sech-Pulses And Sine-Gordon Solitons, Andrew Phillip Koller

Graduate Masters Theses

In this thesis, we show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via a supersymmetric (SUSY) chain. While the reflectionless property in question (vanishing reflection coefficients at all values of the spectral parameter, e.g. energy) has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. We show that the supersymmetric connection of the Akulin's Hamiltonians to a potential-free Hamiltonian is the origin of this property. As the first application for our findings, we show that the SUSY decomposition of Akulin's Hamiltonians explains a well-known effect in …


Integration Of A Worldwide Atmospheric Based Model With A Live Virtual Constructive Simulation Environment, David B. Simmons Mar 2011

Integration Of A Worldwide Atmospheric Based Model With A Live Virtual Constructive Simulation Environment, David B. Simmons

Theses and Dissertations

Yearly DoD spends millions of dollars on Modeling and Simulation tools in order to accomplish two fundamental tasks: make better decisions and develop better skills. Simulators that are based on realistic models enable the USAF to properly train, educate, and employ military forces. LEEDR is an atmospheric model based on worldwide historic weather data that is able to predict the extinction, absorption, and scattering of radiation across a broad range of the electromagnetic spectrum. Through this study LEEDR models the propagation of 1.0642 micron laser radiation at worldwide locations and through various environmental conditions. This modeled laser transmission output, based …


In Vitro Analysis Of Immersed Human Tissues By Raman Microspectroscopy, Franck Bonnier, A. Mehmood, Peter Knief, Aidan Meade, Helen Lambkin, Kathleen Flynn, V. Mcdonagh, C. Healy, T. C. Lee, Fiona Lyng, Hugh Byrne Jan 2011

In Vitro Analysis Of Immersed Human Tissues By Raman Microspectroscopy, Franck Bonnier, A. Mehmood, Peter Knief, Aidan Meade, Helen Lambkin, Kathleen Flynn, V. Mcdonagh, C. Healy, T. C. Lee, Fiona Lyng, Hugh Byrne

Articles

Raman microspectroscopy is a powerful tool for the analysis of tissue sections, providing a molecular map of the investigated samples. Nevertheless, data pre-processing and, particularly, the removal of the broad background to the spectra remain problematic. Indeed, the physical origin of the background has not been satisfactorily determined. Using 785 nm as source in a confocal geometry, it is demonstrated for the example of the protein kappa-elastin that the background and resulting quality of the recorded spectrum are dependent on the morphology of the sample. Whereas a fine powder yields a dominant broad background, compressed pellets and solution-cast thin films …


High-Energy Amplitudes In The Next-To-Leading Order, Ian Balitsky Jan 2011

High-Energy Amplitudes In The Next-To-Leading Order, Ian Balitsky

Physics Faculty Publications

High-energy scattering in the saturation region is described by the evolution of color dipoles. In the leading order this evolution is governed by the non-linear BK equation. To see if this equation is relevant for existing or future accelerators (like EIC or LHeC) one needs to know how big are the next-to-leading order (NLO) corrections. I review the calculation of the NLO corrections to high-energy amplitudes in QCD.


Scattering-Angle Dependence Of Doubly Differential Cross Sections For Fragmentation Of H₂ By Proton Impact, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Michael Schulz Jan 2011

Scattering-Angle Dependence Of Doubly Differential Cross Sections For Fragmentation Of H₂ By Proton Impact, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Michael Schulz

Physics Faculty Research & Creative Works

We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.