Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

An Introduction To Shape Dynamics, Patrick R. Kerrigan Nov 2019

An Introduction To Shape Dynamics, Patrick R. Kerrigan

Physics

Shape Dynamics (SD) is a new fundamental framework of physics which seeks to remove any non-relational notions from its methodology. importantly it does away with a background space-time and replaces it with a conceptual framework meant to reflect direct observables and recognize how measurements are taken. It is a theory of pure relationalism, and is based on different first principles then General Relativity (GR). This paper investigates how SD assertions affect dynamics of the three body problem, then outlines the shape reduction framework in a general setting.


Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form …


Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh Jan 2019

Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh

Electronic Theses and Dissertations

We use the Teukolsky formalism to calculate the gravitational radiation from a non-axi\-symmetric cloud formed due to superradiant amplification of a spin-0 bosonic field. We focus on the prospects of the future space-based gravitational wave detector, Laser Interferometer Space Antenna (LISA), and the current version of ground-based detector, Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO), to detect or constrain scalars with mass in the range $m_s\in [10^{-19},10^{-15}]$ eV and $m_s\in[10^{-14},10^{-11}]$ eV, respectively. Using astrophysical models of black hole populations calibrated to observations we find that, in optimistic scenarios, AdLIGO could detect up to $10^4$ resolvable events in a four-year search if …