Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Characterization Of Single- And Multi-Phase Shock-Accelerated Flows, Patrick John Wayne Jul 2019

Characterization Of Single- And Multi-Phase Shock-Accelerated Flows, Patrick John Wayne

Mechanical Engineering ETDs

Experiments conducted in the Shock Tube Facility at the University of New Mexico are focused on characterization of shock-accelerated flows. Single-phase (gaseous) initial conditions consist of a heavy gas column of sulfur hexafluoride seeded with approximately 11% acetone gas by mass. Visualization of the image plane for gaseous initial conditions is accomplished via planar laser-induced fluorescence (PLIF) with a high-powered Nd:YAG ultraviolet laser and an Apogee Alta U-42 monochrome CCD camera, with a quantum efficiency > 90%. Multi-phase (gas-solid) initial conditions consist of glass micro-beads deposited on small 1-cm diameter discs of specific surface chemistry, mounted flush with the bottom wall …


Jet Rebound From Hydrophobic Substrates In Microgravity, Karl Jeffrey Theodore Cardin Mar 2019

Jet Rebound From Hydrophobic Substrates In Microgravity, Karl Jeffrey Theodore Cardin

Dissertations and Theses

We experimentally investigate the phenomena of large jet rebound, a mode of fluid transfer following oblique jet impacts on hydrophobic substrates. We initially seek to describe the jet rebound regimes in tests conducted in the weightless environment of a drop tower. A parametric study reveals the dependence of the flow structure on the relevant dimensionless groups such as Reynolds number and Weber number defined on the velocity component perpendicular to the substrate. We show that significantly larger diameter jets behave similarly as much smaller jets demonstrated during previous terrestrial investigations is some parameter ranges while the flow is fundamentally different …


Optimizing Glide-Flight Paths, Rory Cveta O'Daly Maglich Jan 2019

Optimizing Glide-Flight Paths, Rory Cveta O'Daly Maglich

Senior Projects Spring 2019

Flight is no rare event in today's society, and aviation is a global industry that significantly contributes to carbon emissions and global warming. Thus, my project theorizes how aviation might be better optimized at a fundamental level to improve aerodynamic efficiency and reduce carbon emissions. This is done by analyzing two systems of flight: gliding and powered flight. In pursuit of an understanding of a hybrid of these flight systems, I first look to qualitatively analyze the benefit of gliding over powered aviation. Powering an aircraft involves an engine that generates thrust, while gliding only involves three forces: lift, drag, …


A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier Jan 2019

A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier

Electronic Theses and Dissertations

The importance of computing in the natural sciences continues to grow as scientists strive to analyze complex phenomena. The dynamics of turbulence, astrophysics simulations, and climate change are just a few examples where computing is critical. These problems are computationally intractable on all computing platforms except supercomputers, necessitating the continued development of efficient algorithms and methodologies in parallel computing. This thesis investigates the use of parallel computing and mathematical modeling in the natural sciences through several applications, namely computational fluid dynamics for impinging jets in mechanical engineering, simulation of biofilms in an aqueous environment in mathematical biology, and the solution …