Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Random Field Disorder At An Absorbing State Transition In One And Two Dimensions, Hatem Barghathi, Thomas Vojta Feb 2016

Random Field Disorder At An Absorbing State Transition In One And Two Dimensions, Hatem Barghathi, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such "random-field" disorder destroys the phase transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, …


Yoyo Lab (Prelab), David Abbott Jan 2016

Yoyo Lab (Prelab), David Abbott

Handouts

No abstract provided.


Yoyo Lab (In-Lab), David Abbott Jan 2016

Yoyo Lab (In-Lab), David Abbott

Handouts

No abstract provided.


Rate Kinetics And Molecular Dynamics Of The Structural Transitions In Amyloidogenic Proteins, Timothy Michael Steckmann Jan 2016

Rate Kinetics And Molecular Dynamics Of The Structural Transitions In Amyloidogenic Proteins, Timothy Michael Steckmann

FIU Electronic Theses and Dissertations

Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer’s, Creutzfeld-Jacob, diabetes, Parkinson’s and others. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous α-helix or random-coil structure. The α-helices convert their structure to β-strands that aggregate into β-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils. On the basis of experimental data, I have developed a mathematical model for the kinetics of the reaction pathways and determined rate parameters for peptide secondary structural conversion and aggregation during the entire fibrillogenesis …