Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2004

Electrical and Computer Engineering

University of New Orleans

Articles 1 - 2 of 2

Full-Text Articles in Physics

Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu Oct 2004

Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu

Electrical Engineering Faculty Publications

An achromatic infrared (λ = 1.2–4 μm), Si-prism quarter-wave retarder (QWR) is described that uses total internal reflection at a buried Si–SiO2 interface at an angle of incidence φ near 33°, where ∂Δ/∂φ = 0. The retardance Δ deviates from 90° by <±2° within a field of view of ±10° (in air) over the entire bandwidth. Because the SiO2 layer at the base of the prism is optically thick, this QWR is unaffected by environmental contamination.


Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam Aug 2004

Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam

Electrical Engineering Faculty Publications

The absolute, average, and differential phase shifts that p- and s-polarized light experience in total internal reflection (TIR) at the planar interface between two transparent media are considered as functions of the angle of incidence φ. Special angles at which quarter-wave phase shifts are achieved are determined as functions of the relative refractive index N. When the average phase shift equals π/2, the differential reflection phase shift Δ is maximum, and the reflection Jones matrix assumes a simple form. For N>√3, the average and differential phase shifts are equal (hence δp=3δs) at …