Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Technological University Dublin

Articles

Discipline
Keyword
Publication Year
File Type

Articles 1 - 30 of 356

Full-Text Articles in Physics

Spectralomics – Towards A Holistic Adaptation Of Label Free Spectroscopy, Hugh Byrne Mar 2024

Spectralomics – Towards A Holistic Adaptation Of Label Free Spectroscopy, Hugh Byrne

Articles

Vibrational spectroscopy, largely based on infrared absorption and Raman scattering techniques, is much vaunted as a label free approach, delivering a high content, holistic characterisation of a sample, with demonstrable applications in a broad range of fields, from process analytical technologies and preclinical drug screening, to disease diagnostics, therapeutics, prognostics and personalised medicine. However, in the analysis of such complex systems, a trend has emerged in which spectral analysis is reduced to the identification of individual peaks, based on reference tables of assignments derived from literature, which are then interpreted as biomarkers. More sophisticated analysis attempts to unmix the spectrum …


Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin Feb 2024

Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin

Articles

Holographic optical elements (HOEs) have the potential to enable more compact, versatile, and lightweight optical designs, but many challenges remain. Volume HOEs have the advantage of high diffraction efficiency, but they present both chromatic selectivity and chromatic dispersion, which impact their use with wide spectrum light sources. Single-color light emitting diode (LED) sources have a narrow spectrum that reduces these issues and this makes them better suited for use with volume HOEs. However, the LED source size must be taken into consideration for compact volume HOE-LED systems. To investigate the design limits for compact HOE-LED systems, a theoretical and experimental …


Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon Jan 2024

Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon

Articles

Photovoltaic (PV) systems are widely adopted for renewable energy generation, but their performance is influenced by complex interactions between longer-term trends and seasonal variations. This study aims to remove these factors and provide valuable insights for optimising PV system operation. We employ comprehensive datasets of measured PV system performance over five years, focusing on identifying the distinct contributions of longer-term trends and seasonal effects. To achieve this, we develop a novel analytical framework that combines time series and statistical analytical techniques. By applying this framework to the extensive performance data, we successfully break down the overall PV system output into …


Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor Dec 2023

Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor

Articles

In this paper, we consider a quantum scalar field propagating on the Reissner-Nordström black hole spacetime. We compute the renormalized stress-energy tensor for the field in the Hartle-Hawking, Boulware and Unruh states. When the field is in the Hartle-Hawking state, we renormalize using the recently developed “extended coordinate” prescription. This method, which relies on Euclidean techniques, is very fast and accurate. Once, we have renormalized in the Hartle-Hawking state, we compute the stress-energy tensor in the Boulware and Unruh states by leveraging the fact that the difference between stress-energy tensors in different quantum states is already finite. We consider a …


Raman Spectroscopic Analysis Of Human Serum Samples Of Convalescing Covid-19 Positive Patients, Hugh Byrne, Naomi Jackson, Jaythoon Hassan Dec 2023

Raman Spectroscopic Analysis Of Human Serum Samples Of Convalescing Covid-19 Positive Patients, Hugh Byrne, Naomi Jackson, Jaythoon Hassan

Articles

Rapid screening, detection and monitoring of viral infection is of critical importance, as exemplified by the rapid spread of SARS-CoV-2, leading to the worldwide pandemic of COVID-19. This is equally the case for the stages of patient convalescence as for the initial stages of infection, to understand the medium and long terms effects, as well as the efficacy of therapeutic interventions. Optical spectroscopic techniques potentially offer an alternative to currently employed techniques of screening for the presence, or the response to infection. In this study, the ability of Raman spectroscopy to distinguish between samples of the serum of convalescent COVID-19 …


Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jun 2023

Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

Amblyopia is a significant issue for children worldwide, and current treatment methods have drawbacks that can hinder treatment effectiveness and/or patient experience. This study proposes a new treatment method using holographic diffusers while also comparing their optical characteristics to a current treatment method (Bangerter foils). Holographic diffusers were developed by optically patterning thin polymer layers on a micron scale. Two compositions of photopolymer (acrylamide and diacetone acrylamide based) are analysed herein. Characterisation shows that holographic diffusers of either composition can achieve a wide range of on-axis intensity reductions, allowing for precise and customisable treatment levels by altering recording exposure time …


Analog Holographic Wavefront Sensor For Defocus And Spherical Aberration Measurement Recorded In A Photopolymer, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy Feb 2023

Analog Holographic Wavefront Sensor For Defocus And Spherical Aberration Measurement Recorded In A Photopolymer, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

An analog holographic wavefront sensor (AHWFS), for measurement of low and high order (defocus and spherical aberration) aberration modes has been developed as volume phase holograms in a photopolymer recording medium. This is the first time that high order aberrations such as spherical aberration can be sensed using a volume hologram in a photosensitive medium. Both defocus and spherical aberration were recorded in a multi-mode version of this AHWFS. Refractive elements were used to generate a maximum and minimum phase delay of each aberration which were multiplexed as a set of volume phase holograms in an acrylamide based-photopolymer layer. The …


Collective Relaxation Processes In Nonchiral Nematics, Neelam Yadav, Yuri Panarin, Wanhe Jiang, Georg H. Mehl, Jagdish Vij Jan 2023

Collective Relaxation Processes In Nonchiral Nematics, Neelam Yadav, Yuri Panarin, Wanhe Jiang, Georg H. Mehl, Jagdish Vij

Articles

Nematic–nematic transitions in a highly polar nematic compound are studied, in thick cells in which the molecules are aligned parallel to the substrates but perpendicular to the applied electric field, using dielectric spectroscopy in the frequency range 1 Hz to 10 MHz over a wide temperature range. The studied compound displays three nematic phases under cooling from the isotropic phase: ubiquitous nematic N; high polarizability NX; and ferroelectric nematic NF. Two collective processes were observed. The dielectric strength and relaxation frequency of one of the processes P2 showed a dependence on the thickness of the cell. The process P1 is …


Cavitation Erosion And Corrosion Resistance Of Hydrophobic Sol-Gel Coatings On Aluminium Alloy, Manasa Hegde, Joseph Mohan, Muhammad Qasim Mushtaq Warraich, Yvonne Kavanagh, Brendan Duffy, Edmond F. Tobin Jan 2023

Cavitation Erosion And Corrosion Resistance Of Hydrophobic Sol-Gel Coatings On Aluminium Alloy, Manasa Hegde, Joseph Mohan, Muhammad Qasim Mushtaq Warraich, Yvonne Kavanagh, Brendan Duffy, Edmond F. Tobin

Articles

Cavitation erosion and erosion-corrosion are the popular failure modes of hydronautics components namely propellers, valves, turbines etc which occurs due to mechanical destructions and electrochemical corrosion. Erosion corrosion is caused due to surge in the number of solid particles affecting the surfaces whereas cavitation erosion is caused due to steady collapse of cavities or bubbles. Aluminium alloys are widely used in marine renewable industries owing to its high strength, light weight and good corrosion resistance. Despite that, cavitation and erosion-corrosion are the limiting factors for these alloys. The aim of the present work is to produce a coating system capable …


Feature Papers In Optical Sensors 2022, Vittorio M. N. Passaro, Yuliya Semenova, Benjamin Miller Jan 2023

Feature Papers In Optical Sensors 2022, Vittorio M. N. Passaro, Yuliya Semenova, Benjamin Miller

Articles

Today, optical sensors are the subject of a very significant number of studies and applications. Many well-established technologies, including free-space optics, integrated photonics, and fiber optics approaches, have been developed in recent decades to fabricate and develop increasingly more efficient optical sensors for applications ranging from industrial control to monitoring the environment, biomedical use, and even as part of the Internet of Things.


Evaluation Of The Photon Contributions To The Solar Energy Conversion For Organic Luminescent Down-Shifting Liquid Beam Splitters In Hybrid Photovoltaic-Thermal (Pvt) Applications Using Raytracing Monte Carlo Simulations, Kenneth Coldrick Jan 2023

Evaluation Of The Photon Contributions To The Solar Energy Conversion For Organic Luminescent Down-Shifting Liquid Beam Splitters In Hybrid Photovoltaic-Thermal (Pvt) Applications Using Raytracing Monte Carlo Simulations, Kenneth Coldrick

Articles

A hybrid photovoltaic-thermal (PVT) system combines photovoltaic (PV) and photo-thermal (PT) energy collection into a single structure, enhancing the potential to achieve greater solar energy conversion efficiencies. Such enhanced efficiencies can result in greater economic returns and could promote a larger uptake of PVT devices in cold and temperate climate countries. Through the utilization of a Monte Carlo ray-tracing model, this work provides new insights into the optical, electrical, and thermal characteristics of PVT devices. In particular, the work focuses on evaluating the behaviour of novel luminescent imidazole-phenanthroline-based working fluids that were previously experimentally investigated as liquid spectral beam splitters …


Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody Jan 2023

Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody

Articles

The acoustic output of clinical therapeutic ultrasound equipment requires regular quality assurance (QA) testing to ensure the safety and efficacy of the treatment and that any potentially harmful deviations from the expected output power density are detected as soon as possible. A hologram, consisting of a reflection grating fabricated in an acrylate photopolymer film, has been developed to produce an immediate, visible, and permanent change in the color of the reconstructed hologram from red to green in response to incident ultrasound energy. The influence of the therapeutic ultrasound insonation parameters (exposure time, ultrasound power density, and proximity to the point …


Review-Electrode Kinetics And Electrolyte Stability In Vanadium Flow Batteries, Andrea Bourke, Daniela Oboroceanu, Nathan Quill, Catherine Lenihan, Maria Alhajji Safi Maria Alhajji Safi, Mallory A. Miller, Robert F. Savinell, Jesse S. Wainright, Varsha Sasikumarsp, Maria Rybalchenko, Pupak Amini, Niall Dalton, Robert P. Lynch, D. Noel Buckley Jan 2023

Review-Electrode Kinetics And Electrolyte Stability In Vanadium Flow Batteries, Andrea Bourke, Daniela Oboroceanu, Nathan Quill, Catherine Lenihan, Maria Alhajji Safi Maria Alhajji Safi, Mallory A. Miller, Robert F. Savinell, Jesse S. Wainright, Varsha Sasikumarsp, Maria Rybalchenko, Pupak Amini, Niall Dalton, Robert P. Lynch, D. Noel Buckley

Articles

Two aspects of vanadium flow batteries are reviewed: electrochemical kinetics on carbon electrodes and positive electrolyte stability. There is poor agreement between reported values of kinetic parameters; however, most authors report that kinetic rates are faster for VIV/VV than for VII/VIII. Cycling the electrode potential increases the rates of both reactions initially due to roughening but when no further roughening is observed, the VII/VIII and VIV/VV reactions are affected oppositely by the pretreatment potential. Anodic pretreatment activates the electrode for the VII/VIII reaction, and deactivates it for VIV/VV. Three states of the carbon surface are suggested: reduced and oxidized states …


The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov Jan 2023

The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov

Articles

The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler-Lagrange equations we proceed to derive some …


Improving The Angular Visibility Of Photopolymer-Based Reflection Holograms For Sensing Applications, Tatsiana Mikulchyk, Kevin Murphy, John Walsh, Suzanne Martin, Dervil Cody, Izabela Naydenova Jan 2023

Improving The Angular Visibility Of Photopolymer-Based Reflection Holograms For Sensing Applications, Tatsiana Mikulchyk, Kevin Murphy, John Walsh, Suzanne Martin, Dervil Cody, Izabela Naydenova

Articles

Volume reflection hologram-based sensors are designed to visibly change colour in response to a target stressor or analyte. However, reflection holograms fabricated in thick photopolymer films are highly angularly selective, making these sensors challenging to view and interpret by non-experts. Here, the use of speckle holography to improve the visibility of reflection holograms is presented. A novel recording approach combining speckle recording techniques with Denisyuk reflection recording geometry is described. The recorded speckle reflection grating operates as a series of multiplexed reflection gratings with a range of spatial frequencies, capable of reflecting light at a wider range of angles. A …


A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill Sep 2022

A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill

Articles

In this paper, we describe an extremely efficient method for computing the renormalized stress-energy tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our results to discuss the null energy condition and the semiclassical backreaction.


Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne May 2022

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne

Articles

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review …


Combining Pharmacokinetics And Vibrational Spectroscopy: Mcr-Als Hard-And-Soft Modelling Of Drug Uptake In Vitro Using Tailored Kinetic Constraints, David Perez-Guaita, Guillermo Quintas, Zeineb Farhane, Roma Tauler, Hugh Byrne May 2022

Combining Pharmacokinetics And Vibrational Spectroscopy: Mcr-Als Hard-And-Soft Modelling Of Drug Uptake In Vitro Using Tailored Kinetic Constraints, David Perez-Guaita, Guillermo Quintas, Zeineb Farhane, Roma Tauler, Hugh Byrne

Articles

Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and …


Estimating The Analytical Performance Of Raman Spectroscopy For Quantification Of Active Ingredients In Human Stratum Corneum, Hichem Kichou, Emilie Munnier, Yuri Dancik, Kamilia Kemel, Hugh Byrne, Ali Tfayli, Dominique Bertrand, Martin Soucé, Igor Chourpa, Franck Bonnier Apr 2022

Estimating The Analytical Performance Of Raman Spectroscopy For Quantification Of Active Ingredients In Human Stratum Corneum, Hichem Kichou, Emilie Munnier, Yuri Dancik, Kamilia Kemel, Hugh Byrne, Ali Tfayli, Dominique Bertrand, Martin Soucé, Igor Chourpa, Franck Bonnier

Articles

Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


A Microfluidic Approach For Synthesis And Kinetic Profiling Of Branched Gold Nanostructures, Qi Cai, Valentina Castagnola, Luca Boselli, Alirio Moura, Hender Lopez, Wei Zhang, João M. De Araújo, Kenneth A. Dawson Feb 2022

A Microfluidic Approach For Synthesis And Kinetic Profiling Of Branched Gold Nanostructures, Qi Cai, Valentina Castagnola, Luca Boselli, Alirio Moura, Hender Lopez, Wei Zhang, João M. De Araújo, Kenneth A. Dawson

Articles

Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, including intrinsic morphological features, and minimal intra-batch, batch-to-batch, and operator variability, is an urgent requirement to elevate nanotechnology towards more trustable biological and technological applications. In this work, microfluidic approaches were employed to achieve fast mixing and good reproducibility in synthesizing a variety of gold nanostructures. The microfluidic setup allowed exploiting spatial resolution to investigate the growth evolution …


Evaluation Of The Potential Of Nanofluids Containing Different Ag Nanoparticle Size Distributions For Enhanced Solar Energy Conversion In Hybrid Photovoltaic-Thermal (Pvt) Applications, James Walshe, John Doran, George Amarandei Jan 2022

Evaluation Of The Potential Of Nanofluids Containing Different Ag Nanoparticle Size Distributions For Enhanced Solar Energy Conversion In Hybrid Photovoltaic-Thermal (Pvt) Applications, James Walshe, John Doran, George Amarandei

Articles

Hybridising photovoltaic and photothermal technologies into a single system that can simultaneously deliver heat and power represents one of the leading strategies for generating clean energy at more affordable prices. In a hybrid photovoltaic-thermal (PVT) system, the capability to modulate the thermal and electrical power output is significantly influenced by the spectral properties of the heat transfer fluid utilised. In this study, we report on one of the first experimental evaluations of the capability of a multimodal silver nanofluid containing various particle shapes and particle sizes to selectively modulate the solar energy for PVT applications. The diverse set of particle …


Normative Data On The Foveal Avascular Zone In A Young Healthy Irish Population Using Optical Coherence Tomography Angiography, Susan M. O'Shea, Veronica O'Dwyer, Grainne Scanlon Jan 2022

Normative Data On The Foveal Avascular Zone In A Young Healthy Irish Population Using Optical Coherence Tomography Angiography, Susan M. O'Shea, Veronica O'Dwyer, Grainne Scanlon

Articles

Purpose: To establish normative data on the size, shape and vascular profile of the foveal avascular zone (FAZ) in a young, healthy, Irish population, using the Cirrus 5000 HD-OCT. Certain diseases may alter FAZ appearance. Normative databases provide normal baseline values for comparison, thus improving diagnostic ability.

Methods: One hundred and fifty-four subjects aged 18–35 years old were recruited. Superficial FAZ area, diameter, circularity, ganglion cell layer, central macular thickness (CMT), vascular perfusion and density were measured using the Cirrus 5000. Axial length was measured with the IOL Master and blood pressure was measured using the Omron sphygmomanometer. …


International Consensus On Lung Function Testing During Covid-19 Pandemic And Beyond, Aisling Mcgowan, Pierantonio Laveneziana, Sam Bayat, Nicole Beydon, P.W. Boros, Felip Burgos, Matjaž Fležar, Monika Franczuk, Maria-Alejandra Galarza, Adrian H. Kendrick, Enrico Lombardi, Jellien Makonga-Braaksma, Meredith C. Mccormack, Laurent Plantier, Sanja Stanojevic, Irene Steenbruggen, Bruce Thompson, Allan L. Coates, Jack Wanger, Donald W. Cockcroft, Bruce Culver, Karl Sylvester, Frans De Jongh Jan 2022

International Consensus On Lung Function Testing During Covid-19 Pandemic And Beyond, Aisling Mcgowan, Pierantonio Laveneziana, Sam Bayat, Nicole Beydon, P.W. Boros, Felip Burgos, Matjaž Fležar, Monika Franczuk, Maria-Alejandra Galarza, Adrian H. Kendrick, Enrico Lombardi, Jellien Makonga-Braaksma, Meredith C. Mccormack, Laurent Plantier, Sanja Stanojevic, Irene Steenbruggen, Bruce Thompson, Allan L. Coates, Jack Wanger, Donald W. Cockcroft, Bruce Culver, Karl Sylvester, Frans De Jongh

Articles

Coronavirus disease 2019 (COVID-19) has negatively affected the delivery of respiratory diagnostic services across the world due to the potential risk of disease transmission during lung function testing. Community prevalence, reoccurrence of COVID-19 surges and the emergence of different variants of SARS-CoV-2 have impeded attempts to restore services. Finding consensus on how to deliver safe lung function services for both patients attending and for staff performing the tests are of paramount importance. This international statement presents the consensus opinion of 23 experts in the field of lung function and respiratory physiology balanced with evidence from the reviewed literature. It describes …


Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, FréDéRic Laquai, Izabela Naydenova, Mikhail Filatov Jan 2022

Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, FréDéRic Laquai, Izabela Naydenova, Mikhail Filatov

Articles

Donor–acceptor–donor BODIPY triads bearing anthracene or pyrene as electron donating subunits were prepared through a stepwise synthesis. Photoinduced electron transfer and formation of long-lived triplet excited states via spin–orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe spectroscopy and further supported by DFT computations. New BODIPYs were found to form triplet states and sensitize singlet oxygen in both polar and non-polar solvents which is unusual for photosensitizers operating via SOCT-ISC. BODIPY-anthracene triad (ABA) was used as a photosensitizer component in a photopolymerizable glass that was prepared by a four-step sol–gel process. ABA in combination with N …


Bias Impedes Progress In Physical Biology, Consciousness Studies And Quantum Gravity, Maurice Goodman Jan 2022

Bias Impedes Progress In Physical Biology, Consciousness Studies And Quantum Gravity, Maurice Goodman

Articles

If scientists hope to make progress in consciousness studies they needs to accept that biased judgments have a major influence on the sciences, how we divide them up, how they are funded and this, in turn, has a profound impact on progress. The imbalance in funding, resulting from bias, in favour of the life and health sciences needs to be addressed as does why perversely little of this funding is devoted to a physics explanation of self-organisation and life on the mesoscopic scale? While life (the cell) is an outstanding example of self-organisation on the mesoscopic scale we need to …


A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan Dec 2021

A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan

Articles

Since it is now possible to make, in a controlled fashion, an almost unlimited variety of nanostructure shapes, it is of increasing interest to understand the forms of biological control that nanoscale shape allows. However, a priori rational investigation of such a vast universe of shapes appears to present intractable fundamental and practical challenges. This has limited the useful systematic investigation of their biological interactions and the development of innovative nanoscale shape-dependent therapies. Here, we introduce a concept of biologically relevant inductive nanoscale shape discovery and evaluation that is ideally suited to, and will ultimately become, a vehicle for machine …


Biochemical Impact Of Solar Radiation Exposure On Human Keratinocytes Monitored By Raman Spectroscopy; Effects Of Cell Culture Environment, Ulises Lopez Gonzalez, Alan Casey, Hugh Byrne Jul 2021

Biochemical Impact Of Solar Radiation Exposure On Human Keratinocytes Monitored By Raman Spectroscopy; Effects Of Cell Culture Environment, Ulises Lopez Gonzalez, Alan Casey, Hugh Byrne

Articles

Understanding and amelioration of the effects of solar radiation exposure are critical in preventing the occurrence of skin cancer. Towards this end, many studies have been conducted in 2D cell culture models under simplified and unrealistic conditions. 3D culture models better capture the complexity of in vivo physiology, although the effects of the 3D extracellular matrix have not been well studied. Monitoring the instantaneous and resultant cellular responses to exposure, and the influence of the 3D environment, could provide an enhanced understanding of the fundamental processes of photocarcinogenesis. This work presents an analysis of the biochemical impacts of simulated solar …


Raman Spectroscopic Characterisation Of Non Stimulated And Stimulated Human Whole Saliva, Genecy Calado, Isha Behl, Hugh Byrne, Fiona Lyng May 2021

Raman Spectroscopic Characterisation Of Non Stimulated And Stimulated Human Whole Saliva, Genecy Calado, Isha Behl, Hugh Byrne, Fiona Lyng

Articles

Human saliva is a unique biofluid which can reflect the physiopathological state of an individual. The wide spectrum of molecules present in saliva, compounded by the close association of salivary composition to serum metabolites, can provide valuable information for clinical diagnostic applications through highly sensitive vibrational spectroscopic techniques such as Raman spectroscopy. However, the nature of saliva, in terms of collection and patient-related characteristics, can be considered factors which may strongly affect the Raman spectral profile of salivary samples and disrupt the search for specific salivary biomarkers in the detection of diseases. The main objective of this study was to …


The Prospect Of Microwave Heating: Towards A Faster And Deeper Crack Healing In Asphalt Pavement, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen Mar 2021

The Prospect Of Microwave Heating: Towards A Faster And Deeper Crack Healing In Asphalt Pavement, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Microwave heating has been shown to be an effective method of heating asphalt concrete and in turn healing the damage. As such, microwave heating holds great potential in rapid (1–3 min) and effective damage healing, resulting in improvement in the service life, safety, and sustainability of asphalt pavement. This study focused on the microwave healing effect on porous asphalt concrete. Steel wool fibres were incorporated into porous asphalt to improve the microwave heating efficiency, and the optimum microwave heating time was determined. Afterwards, the microwave healing efficiency was evaluated using a semi–circular bending and healing programme. The results show that …