Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Plasma and Beam Physics

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 379

Full-Text Articles in Physics

Detailed Characterization Of A Khz-Rate Laser-Driven Fusion At A Thin Liquid Sheet With A Neutron Detection Suite, Benjamin M. Knight, Connor Gautam, Colton R. Stoner, Bryan V. Egner, Joseph R. Smith, Christopher M. Orban, Juan J. Manfredi, Kyle Frische, Michael L. Dexter, Enam A. Chowdury, Anil K. Patniak Nov 2023

Detailed Characterization Of A Khz-Rate Laser-Driven Fusion At A Thin Liquid Sheet With A Neutron Detection Suite, Benjamin M. Knight, Connor Gautam, Colton R. Stoner, Bryan V. Egner, Joseph R. Smith, Christopher M. Orban, Juan J. Manfredi, Kyle Frische, Michael L. Dexter, Enam A. Chowdury, Anil K. Patniak

Faculty Publications

We present detailed characterization of laser driven fusion and neutron production (∼105/second) employing 8 mJ, 40fs laser pulses on a thin (< 1 µm) D2O liquid sheet employing a measurement suite. At relativistic intensity (∼5×1018W/cm2) and high repetition-rate (1 kHz), the system produces consistent D-D fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified b y a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a 3He proportional counter, and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows …


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Jun 2023

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv Jan 2023

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok Jan 2023

The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok

Physics Faculty Publications

The evolution in the post shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. Within a transitional period, the relaxation zone parameters past both, the reflected and transmitted waves, evolve differently compared to that in the incident wave. In a numerical example for the non-dissociating N2 gas heated to 5000 K/10,000 K across the interface and M = 3.5, the relaxation time for the transmitted wave is up to 50% shorter and the relaxation depth for both waves is significantly reduced, thus resulting in a weakened wave structure. The …


Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


Sars-Cov-2 Spike Conformation Determines Plasma Neutralizing Activity Elicited By A Wide Panel Of Human Vaccines, John E. Bowen, Young-Jun Park, Cameron Stewart, Jack T. Brown, William K. Sharkey, Alexandra C. Walls, Anshu Joshi, Kumail Ahmed, Asefa Shariq, Najeeha Talat Iqbal Nov 2022

Sars-Cov-2 Spike Conformation Determines Plasma Neutralizing Activity Elicited By A Wide Panel Of Human Vaccines, John E. Bowen, Young-Jun Park, Cameron Stewart, Jack T. Brown, William K. Sharkey, Alexandra C. Walls, Anshu Joshi, Kumail Ahmed, Asefa Shariq, Najeeha Talat Iqbal

Department of Paediatrics and Child Health

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated …


Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri Aug 2022

Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri

Publications and Research

Integrated planar lenses are critical components for analog optical information processing that enable a wide range of applications including beam steering. Conventional planar lenses require gradient index control which makes their on-chip realization challenging. Here, we introduce a new approach for beam steering by designing an array of coupled waveguides with segmented tails that allow for simultaneously achieving planar lensing and off-chip radiation. The proposed arrayed waveguide lens is built on engineering the evanescent coupling between adjacent channels to realize a photonic lattice with an equi-distant ladder of propagation constants that emulates the continuous parabolic index profile. Through coupled-mode analysis …


A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise Jul 2022

A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise

Faculty Publications and Other Works -- Mathematics

In this report we review some preliminary work on the numerical solution of BGK-type kinetic equations of particle transport. Such equations model the motion of fluid particles via a density field when the kinetic theory of rarefied gases must be used in place of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the fluid in terms of phase space variables, and, in three space dimensions, require 6 independent phase-space variables (3 for space and 3 for velocity) for accurate simulation. This requires sophisticated numerical algorithms and efficient code to realize predictions over desired space and time scales. …


Particle-In-Cell Simulations Of Ion Dynamics In A Pinched-Beam Diode, Jesse C. Foster, John W. Mcclory, S. B. B. Swanekamp, D. D. Hinshelwood, A. S. Richardson, Paul E. Adamson, J. W. Schumer, R. W. James, P. F. Ottinger, D. Mosher May 2022

Particle-In-Cell Simulations Of Ion Dynamics In A Pinched-Beam Diode, Jesse C. Foster, John W. Mcclory, S. B. B. Swanekamp, D. D. Hinshelwood, A. S. Richardson, Paul E. Adamson, J. W. Schumer, R. W. James, P. F. Ottinger, D. Mosher

Faculty Publications

article-in-cell simulations of a 1.6 MV, 800 kA, and 50 ns pinched-beam diode have been completed with emphasis placed on the quality of the ion beams produced. Simulations show the formation of multiple regions in the electron beam flow characterized by locally high charge and current density (“hot spots”). As ions flow through the electron-space-charge cloud, these hot spots electrostatically attract ions to produce a non-uniform ion current distribution. The length of the cavity extending beyond the anode-to-cathode gap (i.e., behind the cathode tip) influences both the number and amplitude of hot spots. A longer cavity length increases the number …


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate Jan 2022

Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Grand Challenges In Low Temperature Plasmas, Xinpei Lu, Peter J. Bruggeman, Stephan Reuter, George Naidis, Annemie Bogaerts, Mounir Laroussi, Michael Keidar, Eric Robert, Jean-Michel Pouvesle, Dawei Liu, Kostya (Ken) Ostrikov Jan 2022

Grand Challenges In Low Temperature Plasmas, Xinpei Lu, Peter J. Bruggeman, Stephan Reuter, George Naidis, Annemie Bogaerts, Mounir Laroussi, Michael Keidar, Eric Robert, Jean-Michel Pouvesle, Dawei Liu, Kostya (Ken) Ostrikov

Electrical & Computer Engineering Faculty Publications

Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. …


A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić Jan 2022

A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić

Physics Faculty Publications

Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard …


Cross-Section Measurement Of Virtual Photoproduction Of Iso-Triplet Three-Body Hypernucleus, ⋀Nn, T. Gogami, K. N. Suzuki, B. Pandey, K. Itabashi, S. Nagao, K. Okuyama, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T.J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P.E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Cross-Section Measurement Of Virtual Photoproduction Of Iso-Triplet Three-Body Hypernucleus, ⋀Nn, T. Gogami, K. N. Suzuki, B. Pandey, K. Itabashi, S. Nagao, K. Okuyama, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T.J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P.E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

Missing-mass spectroscopy with the 3H(e, e′K+) reaction was carried out at Jefferson Lab’s (JLab) Hall A in Oct–Nov, 2018. The differential cross section for the 3H(γ, K+nn was deduced at ω = EeEe′ = 2.102 GeV and at the forward K+-scattering angle (0° ≤ θγK ≤ 5°) in the laboratory frame. Given typical predicted energies and decay widths, which are (BΛ, Γ) = (−0.25, 0.8) and (−0.55, 4.7) MeV, the cross sections were found …


Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


The Impact Of Laser Control On The Porosity And Microstructure Of Selective Laser Melted Nickel Superalloy 718, Travis E. Shelton, Gregory R. Cobb, Carl R. Hartsfield, Benjamin M. Doane, Cayla C. Eckley, Ryan A. Kemnitz Sep 2021

The Impact Of Laser Control On The Porosity And Microstructure Of Selective Laser Melted Nickel Superalloy 718, Travis E. Shelton, Gregory R. Cobb, Carl R. Hartsfield, Benjamin M. Doane, Cayla C. Eckley, Ryan A. Kemnitz

Faculty Publications

Additively manufacturing high performance metals by laser processing represents an exciting opportunity to exploit localized properties by varying input parameters throughout the process. This work explores the solidification and microstructural properties of selectively laser melted (SLM) Inconel 718 (IN718) using unique processing parameters. By employing traditional pulsed laser physics techniques, samples were manufactured with a continuous wave laser to study a potential ubiquitous approach. While the overall power density was controlled, the power, speed, and hatch spacing were varied. The porosity and grain sizes of the samples were characterized by optical and scanning electron microscopes. The influence of processing parameters …


Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv Aug 2021

Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv

Faculty Publications

A generalization of the classic Gaussian random variable to the family of multi-Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the mean and the standard deviation, is introduced. The probability density function (PDF) of the MG family members is an alternating series of Gaussian functions with suitably chosen heights and widths. In particular, for integer values of M, the series has a finite number of terms and leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer, positive values of M, a convergent infinite series of …


54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders

Physics and Astronomy Presentations

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders

Physics and Astronomy Summer Fellows

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


Diagnostics Of A Large Volume Pin-To-Plate Atmospheric Plasma Source For The Study Of Plasma Species Interactions With Cancer Cell Cultures, Laurence Scally, Chaitanya Sarangapani, Brijesh Tiwari, Renee Malone, Hugh Byrne, James Curtin, P.J. Cullen Mar 2021

Diagnostics Of A Large Volume Pin-To-Plate Atmospheric Plasma Source For The Study Of Plasma Species Interactions With Cancer Cell Cultures, Laurence Scally, Chaitanya Sarangapani, Brijesh Tiwari, Renee Malone, Hugh Byrne, James Curtin, P.J. Cullen

Articles

A large gap pin-to-plate, atmospheric pressure plasma reactor is demonstrated as means of in vitro study of plasma species interactions with cell cultures. By employing optical emission and optical absorption spectroscopy, we report that the pin-to-pate plasma array had an optimal discharge frequency for cell death of 1000 Hz in ambient air for the target cancer cell line; human glioblastoma multiform (U-251MG). The detected plasma chemistry contained reactive oxygen and nitrogen species including OH, N2, N2+, and O3. We show that, by varying the plasma discharge frequency, the plasma chemistry can be tailored …


Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace Jan 2021

Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

We use time-delayed, counter-rotating, circularly polarized few-cycle attosecond nonoverlapping pulses to study the temporal coherent control of the resonant process of two-photon double ionization (TPDI) of hydrogen molecule via doubly excited states for pulse propagation direction along ˆk either parallel or perpendicular to the molecular axis ˆR. For ˆk ‖ ˆR and a pulse carrier frequency of 36 eV resonantly populating the Q2 1∏ + u (1) doubly excited state as well as other 1∏ + u doubly excited states, we find that the indirect ionization pathway through these doubly excited states changes the character of the kinematical vortex-shaped …


Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration Jan 2021

Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration

Physics Faculty Publications

A first measurement of the longitudinal beam spin asymmetry ALU in the semi-inclusive electroproduction of pairs of charged pions is reported. ALU is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498-GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the AsinLUϕR moments are extracted for the kinematic variables of interest in the valence quark region. The …


Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang Jan 2021

Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang

Electrical & Computer Engineering Faculty Publications

Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The …


Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …


Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali Jan 2021

Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali

Electrical & Computer Engineering Faculty Publications

The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman Jan 2021

High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman

Electrical & Computer Engineering Faculty Publications

High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. …