Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Dosimetry Of High-Energy Heavy-Ion Beams Using Energy-Dependent Green's Functions, Sang Yull Chun Oct 1994

Dosimetry Of High-Energy Heavy-Ion Beams Using Energy-Dependent Green's Functions, Sang Yull Chun

Physics Theses & Dissertations

A theoretical description of the transport of high-charge and high-energy (HZE) ion bombardment of biological tissue is developed. The energy-dependent Green’s functions and particle fluxes are obtained for two boundary distributions - the monoenergetic and the Gaussian. Approximate energy-dependent Green’s functions for the collision terms are obtained for computational simplicity. As an application of the energy-dependent Green’s function method, dosimetric quantities, such as dose, dose-equivalent, and average quality factor, for 600A MeV56Fe , 517A MeV 40Ar, and 625A MeV 20Ne ion beams incident on a water target are obtained and compared with the values obtained from …


High Energy Coupled Nucleon Tranpsort In One Dimension, Stanley L. Lamkin Apr 1994

High Energy Coupled Nucleon Tranpsort In One Dimension, Stanley L. Lamkin

Physics Theses & Dissertations

The problem of energetic nucleon transport through extended bulk matter is considered in the context of the 'straight ahead' approximation. The applicable form of the Boltzmann transport equation is derived and solved in one dimension. The production term for secondary generation nucleons due to nuclear fragmentation includes 'coupling' of the flux to other types of nucleon projectiles. A physically motivated perturbation series approach is developed to enhance solution convergence. The Boltzmann operator is inverted and the flux is computed using a numerical marching scheme. The secondary production integrals are optimized for second order accuracy using a set of analytical benchmarks. …


The Effects Of Electron Radiation On The Glass Transition Temperature Of A Polyetherimide, Kristen Tulloch Kern Apr 1993

The Effects Of Electron Radiation On The Glass Transition Temperature Of A Polyetherimide, Kristen Tulloch Kern

Physics Theses & Dissertations

The effects of electron radiation on a polyetherimide (PEI), Ultem*, were investigated. In particular, the changes in the glass transition temperature (Tg) with absorbed radiation dose were studied. The polymer was exposed to mono-energetic beams of 100-keV electrons and 1.0-MeV electrons for doses up to 100 megagray (MGy). Dosimetry for the exposures was based on Monte-Carlo simulations of the transfer of energy from an energetic electron to the polymer and on comparison to Nylon standards. Dynamic mechanical analysis was used to determine the (Tg) for non-exposed PEI and the changes in (Tg) resulting from …


Studies Of Radiation Effects In Three High Polymers, Heidi Rene-Mitchell Ries Apr 1987

Studies Of Radiation Effects In Three High Polymers, Heidi Rene-Mitchell Ries

Physics Theses & Dissertations

Three high polymers, Mylar®, Ultem®, and Kapton®, were irradiated to total doses of 1, 5, and 9.5 gigarad using 1-MeV electrons. The glass transition temperatures (Tg) of the materials before and after irradiation were measured using an AC electrical dissipation factor technique. From the Tg data, it was found that the electron radiation at these total doses results in net chain scissioning in Mylar and net crosslinking in Ultem, while self-mending is predominant in Kapton. The dielectric constant was measured before and after irradiation, but no significant changes due to irradiation were observed. Electron paramagnetic resonance (EPR) …


Sensitivity Of A Gas Filter Correlation Instrument To Variations In Atmospheric Profile And Earth Surface Temperatures, Joseph C. Casas Aug 1975

Sensitivity Of A Gas Filter Correlation Instrument To Variations In Atmospheric Profile And Earth Surface Temperatures, Joseph C. Casas

Physics Theses & Dissertations

The Gas Filter Correlation Radiometer Analyzer (GFCR), in application to the remote sensing of trace gases in the atmosphere, is potentially limited by the sensitivity of the measured upwelling thermal radiation to surface temperature and atmospheric temperature conditions. This study has been carried out to examine the principles of operation of the GFCR Analyzer and to obtain quantitative estimates of the errors produced in GFCR Analyzer measurements of CO (4.6μ), S02 (8.6μ), NH3 (11.0μ), and CH4 (8.1μ) resulting from uncertainties in the atmospheric temperature profile and ground temperature.

A simple mathematical prototype GFCR Analyzer was assumed. A line-by-line atmospheric radiative …