Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan Dec 2023

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In solar–terrestrial physics, there is an open question: does a geomagnetic storm affect earthquakes? We expand research in this direction, analyzing the seismic situation after geomagnetic storms (GMs) accompanied by the precipitation of relativistic electrons from the outer radiation belt to form an additional radiation belt (RB) around lower geomagnetic lines. We consider four widely discussed cases in the literature for long-lived (weeks, months) RBs due to GMs and revealed that the 1/GMs 24 March 1991 with a new RB at L~2.6 was followed by an M7.0 earthquake in Alaska, 30 May 1991, near footprint L = 2.69; the 2/GMs …


Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov Nov 2023

Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laserbeam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, exp(-Γ2/2) , quantifies the …


Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa Sep 2023

Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we use techniques in Fock spaces theory and compute how the Segal-Bargmann transform acts on special wave functions obtained by multiplying superoscillating sequences with normalized Hermite functions. It turns out that these special wave functions can be constructed also by computing the approximating sequence of the normalized Hermite functions. First, we start by treating the case when a superoscillating sequence is multiplied by the Gaussian function. Then, we extend these calculations to the case of normalized Hermite functions leading to interesting relations with Weyl operators. In particular, we show that the Segal-Bargmann transform maps superoscillating sequences onto …


Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens Aug 2023

Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by …


Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam Aug 2023

Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

For any experiment with two entangled photons, some joint measurement outcomes can have zero probability for a precise choice of basis. These perfect anti-correlations would seem to be a purely quantum phenomenon. It is, therefore, surprising that these very anti-correlations are also evident when the input to the same experiment is analyzed via classical electromagnetic theory. Demonstrating this quantum–classical connection for arbitrary two-photon states and analyzing why it is successful motivates alternative perspectives concerning entanglement, the path integral, and other topics in quantum foundations.


Quantum Reality With Negative-Mass Particles, Mordecai Waegell, Eliahu Cohen, Avshalom C. Elitzur, Jeff Tollaksen, Yakir Aharonov Jul 2023

Quantum Reality With Negative-Mass Particles, Mordecai Waegell, Eliahu Cohen, Avshalom C. Elitzur, Jeff Tollaksen, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Physical interpretations of the time-symmetric formulation of quantum mechanics, due to Aharonov, Bergmann, and Lebowitz are discussed in terms of weak values. The most direct, yet somewhat naive, interpretation uses the time-symmetric formulation to assign eigenvalues to unmeasured observables of a system, which results in logical paradoxes, and no clear physical picture. A top–down ontological model is introduced that treats the weak values of observables as physically real during the time between pre- and post-selection (PPS), which avoids these paradoxes. The generally delocalized rank-1 projectors of a quantum system describe its fundamental ontological elements, and the highest-rank projectors corresponding to …


Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich Jul 2023

Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a recent paper, [Y. Aharonov, S. Popescu, D. Rohrlich, Proc. Natl. Acad. Sci. U.S.A.118 e1921529118 (2021)], it was argued that while the standard definition of conservation laws in quantum mechanics, which is of a statistical character, is perfectly valid, it misses essential features of nature and it can and must be revisited to address the issue of conservation/nonconservation in individual cases. Specifically, in the above paper, an experiment was presented in which it can be proven that in some individual cases, energy is not conserved, despite being conserved statistically. It was felt however that this is worrisome and …


Quantum Stirling Heat Engine Operating In Finite Time, Debmalya Das, George Thomas, Andrew N. Jordan Jul 2023

Quantum Stirling Heat Engine Operating In Finite Time, Debmalya Das, George Thomas, Andrew N. Jordan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a quantum Stirling heat engine, the heat exchanged with two thermal baths is partly utilized for performing work by redistributing the energy levels of the working substance. We analyze the thermodynamics of a quantum Stirling engine operating in finite time. We develop a model in which a time-dependent potential barrier changes the energy-level structure of the working substance. The process takes place under a constant interaction with the thermal bath. We further show that in the limit of slow operation of the cycle and low temperature, the efficiency of such an engine approaches Carnot efficiency. We also show that …


Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell May 2023

Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The interaction between a quantum charge and a dynamic source of a magnetic field is considered in the Aharonov–Bohm (AB) scenario. It is shown that, in weak interactions with a post-selection of the source, the effective vector potential is, generally, complex-valued. This leads to new experimental protocols to detect the AB phase before the source is fully encircled. While this does not necessarily change the nonlocal status of the AB effect, it brings new insights into it. Moreover, we discuss how these results might have consequences for the correspondence principle, making complex vector potentials relevant to the study of classical …


Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer Apr 2023

Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I show how the Aharonov–Vaidman identity A|ψ>=<A⟩|ψ>+ΔA| ψA> can be used to prove relations between the standard deviations of observables in quantum mechanics. In particular, I review how it leads to a more direct and less abstract proof of the Robertson uncertainty relation ΔAΔB≥12|< [A,B]>| than the textbook proof. I discuss the relationship between these two proofs and show how the Cauchy–Schwarz inequality can be derived from the Aharonov–Vaidman identity. I give Aharonov–Vaidman based proofs of the Maccone–Pati uncertainty relations …


Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam Apr 2023

Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article we set out to understand the significance of the process matrix formalism and the quantum causal modelling programme for ongoing disputes about the role of causation in fundamental physics. We argue that the process matrix programme has correctly identified a notion of ‘causal order’ which plays an important role in fundamental physics, but this notion is weaker than the common-sense conception of causation because it does not involve asymmetry. We argue that causal order plays an important role in grounding more familiar causal phenomena. Then we apply these conclusions to the causal modelling programme within quantum foundations, …


The Temporal Asymmetry Of Influence Is Not Statistical, Emily Adlam Apr 2023

The Temporal Asymmetry Of Influence Is Not Statistical, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

We argue that the temporal asymmetry of influence is not merely the result of thermodynamics: it is a consequence of the fact that modal structure of the universe must admit only processes which cannot give rise to contradictions. We appeal to the process matrix formalism developed in the field of quantum foundations to characterise processes which are compatible with local free will whilst ruling out contradictions, and argue that this gives rise to ‘consistent chaining’ requirements that explain the temporal asymmetry of influence. We compare this view to the perspectival account of causation advocated by Price and Ramsey.


A Mathematical Framework For Operational Fine Tunings, Lorenzo Catani, Matthew Leifer Mar 2023

A Mathematical Framework For Operational Fine Tunings, Lorenzo Catani, Matthew Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the framework of ontological models, the inherently nonclassical features of quantum theory always seem to involve properties that are fine tuned, i.e. properties that hold at the operational level but break at the ontological level. Their appearance at the operational level is due to unexplained special choices of the ontological parameters, which is what we mean by a fine tuning. Famous examples of such features are contextuality and nonlocality. In this article, we develop a theory-independent mathematical framework for characterizing operational fine tunings. These are distinct from causal fine tunings – already introduced by Wood and Spekkens in [NJP,17 …


High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian Feb 2023

High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

The superconducting diode effect has recently been reported in a variety of systems and different symmetry-breaking mechanisms have been examined. However, the frequency range of these potentially important devices still remains obscure. We investigated superconducting microbridges of Nb3Sn in out-of-plane magnetic fields; optimum magnetic fields of ∼10 mT generate ∼10% diode efficiency, while higher fields of ∼15–20 mT quench the effect. The diode changes its polarity with magnetic field reversal. We documented superconductive diode rectification at frequencies up to 100 kHz, the highest reported as of today. Interestingly, the bridge resistance during diode operation reaches a value that is a …