Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physics

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht May 2022

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht

Masters Theses

Beta decay and collinear laser spectroscopy are proven efficient tools to study nuclear structure far from stability. Two areas of significance are investigations into nuclear deformation and shape coexistence, as well as delayed neutron emissions used in nuclear energy applications. This contribution presents the ongoing development towards a novel beta-decay spectroscopy station for the VITO experiment at CERN’s radioactive ion beam facility ISOLDE. The setup will utilize both collinear laser spectroscopy and beta-decay spectroscopy to measure the energy and spin-parities of the ground and excited states of radioactive beams. Initial designs of the support structure, magnetic field, and detector array …


Transverse Energy Analysis In Small Collision Systems, Alexander L. Aukerman May 2022

Transverse Energy Analysis In Small Collision Systems, Alexander L. Aukerman

Masters Theses

Heavy Ion Collisions performed in the LHC at Cern are capable of generating a new phase of nuclear matter known as the Quark Gluon Plasma. In addition to running heavy ion collisions, the detectors dedicated to studying the QGP perform collisions utilizing smaller collision systems for the sake of comparing key measurements associated with the creation of a QGP. The transverse energy of the particles generated from the collision is one such key measurement. For the sake of comparison an analysis is performed on the transverse energy measurements taken from proton-proton collisions.


Machine Learning Applications For Waveform Analysis, Micah R. Cruz Aug 2021

Machine Learning Applications For Waveform Analysis, Micah R. Cruz

Masters Theses

Since the later 20th century, the search for physics beyond the Standard Model (BSM) has been paramount to many nuclear and particle physicists. Neutron and nuclear beta decay experiments provide one avenue to search for evidence of BSM physics by contributing to the unitarity check of the Cabibbo-Kobayashi-Maskawa matrix. Many of these experiments detect neutron decay products as digitized waveforms. As computing power increases and novel algorithms are developed, it is compelling to investigate machine learning methods as an analytic tool for such waveform data. These methods can allow for very fast data exploration techniques, and if pseudodata is available …


Probing Pulse Structure At The Spallation Neutron Source Via Polarimetry Measurements, Connor Miller Gautam May 2017

Probing Pulse Structure At The Spallation Neutron Source Via Polarimetry Measurements, Connor Miller Gautam

Masters Theses

The Fundamental Neutron Physics Beamline (FNPB) at Spallation Neutron Source is used to probe fundamental forces via cold neutrons. The beamline's latest experiment is probing the hadronic weak interaction through the capture of polarized cold neutrons on 3He nuclei. While the strong nuclear force is dominant in this interaction, a weak signal can be observed in the parity violating momentum asymmetry in the reaction products. As the asymmetry measurement requires both neutron spin states, a means of controlling the neutron spin is required. In order to alternate the spins, a radio frequency spin rotator was installed for the experiment. …


Characterization Of Reactor Background Radiation At Hfir For The Prospect Experiment, Blaine Alexander Heffron May 2017

Characterization Of Reactor Background Radiation At Hfir For The Prospect Experiment, Blaine Alexander Heffron

Masters Theses

This work describes an investigation of the background radiation present at the High Flux Isotope Reactor (HFIR) on behalf of the PROSPECT collaboration. The PROSPECT experiment is designed to make a precision measurement of the antineutrino spectrum at HFIR and search for sterile neutrinos. Temporal and spacial variation of neutron and gamma backgrounds at the experiment site for the PROSPECT detector are measured in order to determine if the reactor correlated radiation will contribute a significant background to the inverse beta decay signal. Knowledge of spacial background variation will also be used to inform the design of a local shield …


Development Of Nuclear Underground Engineered Test Surrogates For Technical Nuclear Forensics Exploitation, Robert Boone Gilbreath May 2017

Development Of Nuclear Underground Engineered Test Surrogates For Technical Nuclear Forensics Exploitation, Robert Boone Gilbreath

Masters Theses

A method for formulation and production of Nuclear UnderGround Engineered Test Surrogates (NUGETS) based on notional improvised nuclear device (IND) detonations in an underground environment analogous to the Nevada National Security Site (NNSS) is presented. Extensive statistical analyses of precursory geochemical and geophysical characteristics are combined with an augmented surrogate debris cooling technique and predictive IND contributions from the ORIGEN Fallout Analysis Tool. Precursory and resultant elemental compositions, cooling curve calculations, and visual comparison of NUGETS to genuine underground debris are reported. Application of NUGETS methodology to future studies in urban, underground post-detonation technical nuclear forensic (TNF) analysis is suggested.


Experimental Study On The Production Of Negative Ion Copper Clusters And Applications, Ran Chu Dec 2016

Experimental Study On The Production Of Negative Ion Copper Clusters And Applications, Ran Chu

Masters Theses

At the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratories (ORNL), we investigated the formation, production and potential application of negative-ion copper clusters using mass distributions of negative-ion copper clusters obtained by bombarding various copper samples with Cs ions. The Cu samples – in very large mass-selected clusters Cu (e.g. n=54) – included natural Cu, isotopically enriched copper-63 and copper-65, and electroformed ultra-clean Cu. Mass spectra of negative copper cluster produced by Cs sputter source size up to 50 are shown for the first time.

Three main features were observed for all four copper samples: the intensity …


Installation And Alignment Of The N3he Experiment, Eric Lee Plemons Dec 2015

Installation And Alignment Of The N3he Experiment, Eric Lee Plemons

Masters Theses

The n3He experiment is designed to probe the hadronic weak interaction by measuring the parity violating asymmetry between the spin of incoming neutrons and the momentum of outgoing protons following the nuclear break up of a helium three upon absorbing a neutron. Cold neutrons from the SNS are first polarized then allowed to impact a target chamber filled with helium three where the reaction occurs. Energetic particles resulting from the nuclear breakup ionize the helium three gas and are thereby detected as currents by an array of signal wires within the target chamber. In order to make a statistics limited …


Mass Table Calculations With Nuclear Density Functional Theory, Noah Watson Birge May 2015

Mass Table Calculations With Nuclear Density Functional Theory, Noah Watson Birge

Masters Theses

To better understand nuclei and the strong nuclear force, it is useful to analyze global nuclear properties and trends across the nuclear chart. To this end, we utilized Nuclear Density Functional Theory with Skyrme Energy Density Functionals in conjunction with high-performance computing to perform large-scale mass table calculations for even-even nuclei. Using the binding energy, pairing gap, root-mean-square radius, and deformation data from these tables we were able to analyze the two-proton and two-neutron drip lines, neutron skin depth, two-proton radioactivity, and the effect of nuclear deformation on mass filters. We used numerous energy density functionals to assess the statistical …


Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz Dec 2014

Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz

Masters Theses

Transfer reactions in inverse kinematics have provided critical information in the study of exotic nuclei. However, transfer reactions with charged particles suffer from poor resolution. The measurement of gamma-rays offers several advantages: they provide not only good resolution in measurements but also other information about the nuclei like lifetimes of unstable states. The combination of these two methods would be the ideal situation to gather information about nuclear structure.

HAGRiD, which stands for The Hybrid Array of Gamma Ray Detectors, is a LaBr3(Ce) [lanthanum bromide crystal with a cerium activator] scintillation array to measure gamma rays from transfer reactions and …


Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold Aug 2014

Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold

Masters Theses

Actinium-225 is one of the more effective radioisotopes used in alpha radioimmunotherapy. Due to its ten-day half-life, it is more efficient to create its precursor, 229Th [Thorium-229] (t1/2[half-life] = 7932 ± 55 years). In this work, 229Th was produced via 40 MeV [Mega electron Volts] proton bombardment of a thick 232Th [Thorium-232] target. The irradiation took place at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab (ORNL). The target, consisting of 23 stacked natural thorium foils (137 mg/cm2 [milligrams per square centimeter] each), was irradiated with 50 nA [nanoamps] of …


Evaluation Of Tagging Techniques Gamma-Decay Probabilities Using The Surrogate Method, Timothy Lee Reed Dec 2012

Evaluation Of Tagging Techniques Gamma-Decay Probabilities Using The Surrogate Method, Timothy Lee Reed

Masters Theses

A detailed analysis of the statistical and discrete [gamma]-decay tagging techniques was conducted using the absolute surrogate and surrogate ratio method (SRM) to obtain the 92Mo(n,[gamma]) cross section in an equivalent neutron energy range of 80 to 880 keV. Excited 93Mo and 95Mo nuclei were populated using (d,p) reactions on 92Mo and 94Mo targets, respectively. The absolute surrogate 92Mo(n,[gamma]) cross sections disagreed with evaluated neutron capture cross section data by as much as a factor of 4 using the statistical tagging approach, whereas the discrete [gamma]-decay tag absolute surrogate cross section disagreed with the evaluated neutron capture cross section by …


Testing A Novel Technique To Improve Aluminum-26 Accelerator Mass Spectrometry Measurements For Earth Science Applications, Meghan Sarah Janzen Dec 2012

Testing A Novel Technique To Improve Aluminum-26 Accelerator Mass Spectrometry Measurements For Earth Science Applications, Meghan Sarah Janzen

Masters Theses

The measurement of cosmogenic 26Al [aluminum-26] in geological samples by accelerator mass spectrometry (AMS) is typically conducted on Al2O3 [aluminum oxide] targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- [negative atomic aluminum ions] required for measuring low-levels of 26Al. This thesis presents the performance of AlN [aluminum nitride], AlF3 [aluminum fluoride] and mixed AlN + Al2O3 as novel alternative source materials for the analysis of 26Al. A negative ion cesium sputtering source at the Holifield …


Higher-Order Corrections In Effective Theory Of Deformed Nuclei, Jialin Zhang Aug 2012

Higher-Order Corrections In Effective Theory Of Deformed Nuclei, Jialin Zhang

Masters Theses

The low-energy excitation bands of open-shell heavy nuclei have been accounted for by collective motion of the constituting nucleons. Macroscopically, heavy nuclei can be looked upon as deformed rotors undergoing surface vibration and rotation. Traditionally, deformed nuclei are described within the Bohr-Mottelson geometric model or the interacting boson model. An effective theory that exploits spontaneous symmetry breaking has recently been developed for axially deformed nuclei. It describes the rotational and vibrational degrees of freedom in terms of Nambu-Goldstone bosons and quadrupole phonons respectively, with a power counting based on their different energy scales. A systematic way to construct the rotationally …


A High-Energy Neutron Flux Spectra Measurement Method For The Spallation Neutron Source, Nicholas Patrick Luciano May 2012

A High-Energy Neutron Flux Spectra Measurement Method For The Spallation Neutron Source, Nicholas Patrick Luciano

Masters Theses

The goal of this work was to develop a foil activation method to measure high-energy (∼1-100 MeV) neutron flux spectra at the Spallation Neutron Source by researching the scientific literature, assembling an experimental apparatus, performing experiments, analyzing the results, and refining the technique based on experience. The primary motivation for this work is to provide a benchmark for the neutron source term used in target station and shielding simulations Two sets of foil irradiations were performed, one at the ARCS beamline and one at the POWGEN beamline. The gamma radiation of the foil activation products was measured with a high …


Nuclear Modification Factor For Production Of Open Heavy Flavor At Forward Rapidity In Cu+Cu Collisions, Archil Garishvili Dec 2011

Nuclear Modification Factor For Production Of Open Heavy Flavor At Forward Rapidity In Cu+Cu Collisions, Archil Garishvili

Masters Theses

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory with its muon spectrometer has the ability to detect muons over the range of pseudorapidity 1.1 < |eta| < 2.25. Single muon production is an important tool for studying heavy flavor production via semi-leptonic decays of open heavy flavor mesons. Because of their large mass, heavy quarks are produced in earlier stages of heavy ion collisions. Therefore, heavy flavor production can serve as an important probe of the Quark Gluon Plasma, a novel state of matter predicted to be created at RHIC. The measurement of the nuclear modification factor of open heavy flavor at forward rapidity in Cu+Cu collisions at sqrt{s_{NN}}=200 GeV is presented. Measurements of heavy flavor production in p+p collisions at sqrt{s_{NN}}=200 GeV will be also presented.


A Study Of The Release Properties Of Sn And Sns From An Isol-Type Target/Ion Source System, Ronald Earl Goans May 2011

A Study Of The Release Properties Of Sn And Sns From An Isol-Type Target/Ion Source System, Ronald Earl Goans

Masters Theses

Radioactive ion beams (RIBs) provide a method for studying the properties of increasingly exotic nuclei. For many nuclei, the intensity of the RIB available in the isotope separation on-line (ISOL) technique is limited by the relatively long delay time in the target/ion source system (TISS). New techniques are needed to decrease this delay time, thereby increasing the intensity of the RIBs available for study.

The sulfide molecular sideband was discovered in 2001 as a way to greatly enhance the quality of Sn beams. Holdup measurements were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) to determine the extent to …