Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Evgeny Tsymbal Publications

2019

Antiferromagnetic

Articles 1 - 2 of 2

Full-Text Articles in Physics

Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal Apr 2019

Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The anomalous Hall effect (AHE) is a well-known fundamental property of ferromagnetic metals, commonly associated with the presence of a net magnetization. Recently, an AHE has been discovered in noncollinear antiferromagnetic (AFM) metals. Driven by nonvanishing Berry curvature of AFM materials with certain magnetic space-group symmetry, anomalous Hall conductivity (AHC) is very sensitive to the specific type of magnetic ordering. Here, we investigate the appearance of AHC in antiperovskite materials family ANMn3 (A = Ga, Sn, Ni), where different types of noncollinear magnetic ordering can emerge. Using symmetry analyses and first-principles density-functional theory calculations, we show that with almost …


Dirac Nodal Line Metal For Topological Antiferromagnetic Spintronics, Ding-Fu Shao, Gautam Gurung, Shu-Hui Zhang, Evgeny Y. Tsymbal Feb 2019

Dirac Nodal Line Metal For Topological Antiferromagnetic Spintronics, Ding-Fu Shao, Gautam Gurung, Shu-Hui Zhang, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the N´eel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered N´eel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd2 allows the electrical control of the Dirac nodal line by the N´eel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the N´eel vector leads to switching …