Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Microwave Bessel-Beam Propagation Through Spatially Inhomogeneous Media, Ryan Francis Grecco Jan 2017

Microwave Bessel-Beam Propagation Through Spatially Inhomogeneous Media, Ryan Francis Grecco

Graduate College Dissertations and Theses

Long range wireless power transmission (WPT) is a critical technology for the development of remote power systems for air and space vehicles as well as for point-to-point transmission on Earth. This can be achieved using either a laser for transmission in the infrared to optical frequency domain or by using microwaves. The objective of this research is to study the application of microwave power transmission (MPT) through the use of a so-called Bessel-beam whose unique propagation properties include a self-healing ability as well as non-diffractive properties. These two unique properties lead to an increase in the efficiency of microwave power …


Accelerating Quantum Monte Carlo Via Graphics Processing Units, Benjamin Evert Himberg Jan 2017

Accelerating Quantum Monte Carlo Via Graphics Processing Units, Benjamin Evert Himberg

Graduate College Dissertations and Theses

An exact quantum Monte Carlo algorithm for interacting particles in the spatial continuum is extended to exploit the massive parallelism offered by graphics processing units. Its efficacy is tested on the Calogero-Sutherland model describing a system of bosons interacting in one spatial dimension via an inverse square law. Due to the long range nature of the interactions, this model has proved difficult to simulate via conventional path integral Monte Carlo methods running on conventional processors. Using Graphics Processing Units, optimal speedup factors of up to 640 times are obtained for N = 126 particles. The known results for the ground …


Wronskian And Gram Solutions To Integrable Equations Using Bilinear Methods, Benjamin Wiggins Jan 2017

Wronskian And Gram Solutions To Integrable Equations Using Bilinear Methods, Benjamin Wiggins

Graduate College Dissertations and Theses

This thesis presents Wronskian and Gram solutions to both the Korteweg-de Vries and Kadomtsev-Petviashvili equations, which are then scalable to arbitrarily large numbers of interacting solitons.

Through variable transformation and use of the Hirota derivative, these nonlinear partial differential equations can be expressed in bilinear form. We present both Wronskian and Gram determinants which satisfy the equations.

N=1,2,3 and higher order solutions are presented graphically; parameter tuning and the resultant behavioral differences are demonstrated and discussed. In addition, we compare these solutions to naturally occurring shallow water waves on beaches.


The Role Of N-Terminal Acidic Inserts On The Dynamics Of The Tau Protein., Miranda Redmond Jan 2017

The Role Of N-Terminal Acidic Inserts On The Dynamics Of The Tau Protein., Miranda Redmond

Graduate College Dissertations and Theses

Alzheimer’s disease (AD), the most prevalent neurodegenerative disease, is characterized in part by disruptions in axonal transport. Axonal transport is a process by which motor proteins carry organelles and other cargo made in the neuronal cell body along microtubule tracks to distal regions of the axon. The microtubule-associated protein (MAP) Tau plays a crucial role in regulating axonal transport, and is implicated in the development of AD and other types of dementia collectively known as Tauopathies. Tau is a neuronal-specific MAP that has six isoforms alternatively spliced from a single gene. These isoforms differ by the presence of zero, one, …


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson Jan 2017

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as …