Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Richmond

Scattering

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, M. Duer, C. L. A. S. Collaboration, O. Hen, E. Piasetzky, H. Hakobyan, L. B. Weistein, M. Braverman, Gerard P. Gilfoyle, Et. Al. Aug 2018

Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, M. Duer, C. L. A. S. Collaboration, O. Hen, E. Piasetzky, H. Hakobyan, L. B. Weistein, M. Braverman, Gerard P. Gilfoyle, Et. Al.

Physics Faculty Publications

The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. …


Electron Transport In Quantum Dot Chains: Dimensionality Effects And Hopping Conductance, V. P. Kunets, Mariama Rebello Sousa Dias, T. Rembert, M. E. Ware, Y. I. Mazur, V. Lopez-Richard, H. A. Mantooth, G. E. Marques, G. J. Salamo May 2013

Electron Transport In Quantum Dot Chains: Dimensionality Effects And Hopping Conductance, V. P. Kunets, Mariama Rebello Sousa Dias, T. Rembert, M. E. Ware, Y. I. Mazur, V. Lopez-Richard, H. A. Mantooth, G. E. Marques, G. J. Salamo

Physics Faculty Publications

Detailed experimental and theoretical studies of lateral electron transport in a system of quantum dot chains demonstrate the complicated character of the conductance within the chain structure due to the interaction of conduction channels with different dimensionalities. The one-dimensional character of states in the wetting layer results in an anisotropic mobility, while the presence of the zero-dimensional states of the quantum dots leads to enhanced hopping conductance, which affects the low-temperature mobility and demonstrates an anisotropy in the conductance. These phenomena were probed by considering a one-dimensional model of hopping along with band filling effects. Differences between the model and …