Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physics

Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka Dec 2011

Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles.

The spatial extent of the 2DEG formed at the SrTiO3/LaAlO3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO3. The confinement width is then determined by the attenuation length of the metal induced gap …


First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu Dec 2011

First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The physical and chemical properties of decorated graphene and graphene ribbons, single-layer III-V systems, three-dimensional carbon and BN foam, and transition-metal-molecular sandwich nanowires have been investigated by first-principle calculations and their potential applications have been predicted. First, it is shown that zigzag graphene nanoribbons (ZGNRs) can be converted into half metal when their edges are decorated by some chemical functional groups, and the half-metalicity is induced by chemical potential difference between two edges when one edge is decorated by electron-donating group like –OH and the other edge is decorated by electron-accepting group like –F, -NH2, -N(CH3) …


Thermodynamics Of Magnetic Multilayers, Tathagata Mukherjee Nov 2011

Thermodynamics Of Magnetic Multilayers, Tathagata Mukherjee

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Our interest in thermodynamics of magnetic thin film heterostructure began by exploring the possibility to use magnetic nanostructures in the search for optimized magnetocaloric materials for potential room temperature refrigeration. In the present thesis magnetic thin film heterostructures are experimentally realized by Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD). Co/Cr and Fe/Cr superlattices were fabricated using mean-field theoretical concepts as guiding principles. The potential of artificial antiferromagnets for near room-temperature refrigeration is explored. Magnetocaloric properties are deduced from measurements of the temperature and field dependence of the magnetization of our samples. The effects of intra-plane and inter-plane exchange …


Self Assembly And Interface Chemistry Of Non-Metallated Tetraphenyl Porphyrin, Geoffrey Rojas Oct 2011

Self Assembly And Interface Chemistry Of Non-Metallated Tetraphenyl Porphyrin, Geoffrey Rojas

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The study of the electronic properties and geometrical arrangement of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphine on metal is presented. The systems were analyzed using both scanning tunneling microscopy and photoelectron spectroscopy and compared across surfaces to determine how the interface chemistry between the metal and molecule affect the self-assembly and band structure of the adsorbed species. The molecules are found to self-assemble and grow on the Ag(111) surface in a manner described by similar models to weakly bound metal/metal surface systems. The CH-pi bonds between molecules are found to largely determine the relative inter-molecular arrangement, while the more isotropic van …


Functional Two-Dimensional Electronic Gases At Interfaces Of Oxide Heterostructures, Yong Wang Aug 2011

Functional Two-Dimensional Electronic Gases At Interfaces Of Oxide Heterostructures, Yong Wang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

A quasi-two dimensional electron gas (2DEG) in oxide heterostructures such as LaAlO3/SrTiO3 has unique properties that are promising for applications in all-oxide electronic devices. In this dissertation, we focus on understanding and predicting novel properties of the 2DEG by performing first-principles electronic calculations within the frame work of density-functional theory (DFT).

The effects of polarization in all-oxide heterostructures incorporating different ferroelectric constituents, such as KNbO3/ATiO3 (A = Sr, Ba, Pb), are investigated. It is found that screening charge at the interface that counteracts the depolarizing electric field in the ferroelectric material significantly changes the …


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and …


The Interplay Between Symmetry And Static Dipoles With Adsorption On Molecular Substrates, Zhengzheng Zhang May 2011

The Interplay Between Symmetry And Static Dipoles With Adsorption On Molecular Substrates, Zhengzheng Zhang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

This thesis presents evidence of preferential adsorption and the associated dipole-dipole interactions that can occur at molecule to molecule interfaces. The results are discussed in the context of the possibility of interactions caused by strong intrinsic dipoles when adsorbed on electrostatically biased substrates. Key is the discovery of lock and key adsorption chemistry by comparing the reversible absorption of the three isomers of di-iodobenzene (1,2-di-iodobenzene, 1,3-di-iodobenzene, and 1,4-di-iodobenzene) on molecular films of a quinonoid zwitterion. There is unequivocal evidence that the molecular adsorption and absorption of 1, 3-diiodobenzene is strongly favored at 150 K over the other isomers of di-iodobenzene. …


The Photofragmentation Processes Of The Closo-Carborane And The Local Structure Of Transition Metal Doped Semiconducting Boron Carbide Thin Films, Jing Liu Apr 2011

The Photofragmentation Processes Of The Closo-Carborane And The Local Structure Of Transition Metal Doped Semiconducting Boron Carbide Thin Films, Jing Liu

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

I investigated the photofragmentation processes of various closo-carboranes in an effort to understand the radical-induced polymerization of the closo-carboranes (i.e., semiconducting film growth), based on their partial dehydrogenation during plasma-enhanced chemical vapor deposition. The chemistry of vacuum ultraviolet VUV assisted dehydrogenation processes of both the closo-carboranes and related closo-phosphacarboranes were compared by photoionization mass spectrometry studies. The dominant ion pairs were identified and compared with the energetics constructed by theoretical modeling for the possible dissociation pathways.

Transition metal (Mn, Fe, Co) doped boron carbides thin films produced by plasma-enhanced chemical vapor deposition of orthocarborane (closo …


Magnetism Of Cluster-Deposited Y–Co Nanoparticles, Balamuruga Balamurugan, Ralph Skomski, Xingzhong Li, V. R. Shah, George C. Hadjipanayis, Jeffrey E. Shield, David J. Sellmyer Jan 2011

Magnetism Of Cluster-Deposited Y–Co Nanoparticles, Balamuruga Balamurugan, Ralph Skomski, Xingzhong Li, V. R. Shah, George C. Hadjipanayis, Jeffrey E. Shield, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Nanoparticles of YCo2, YCo3, and YCo5 are produced by cluster-deposition and investigated both structurally and magnetically. The nanoparticles have sizes of less than 10 nm and are superparamagnetic at 300 K, irrespective of stoichiometry. As-produced nanoparticles exhibit disordered structures with magnetic properties differing from those of the bulk particles. The temperature-dependent magnetization curves of the nanoparticles reveal blocking temperatures from 110 to 250 K, depending on stoichiometry. The magnetic anisotropy constant K1 of disordered YCo5 nanoparticles of 7.8 nm in size is 3.5×106ergs/cm3, higher than those of the disordered YCo …


Structure And Magnetism Of Mnau Nanoclusters, X. Wei, Damien Le Roy, Ralph Skomski, Xingzhong Li, Zhiguang Sun, Jeffrey E. Shield, M. J. Kramer, David J. Sellmyer Jan 2011

Structure And Magnetism Of Mnau Nanoclusters, X. Wei, Damien Le Roy, Ralph Skomski, Xingzhong Li, Zhiguang Sun, Jeffrey E. Shield, M. J. Kramer, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Equiatomic MnAu clusters with average sizes of 4 and 10 nm are produced by inert-gas condensation. As-produced clusters are used to form both dense cluster films and films with clusters embedded in a W matrix with a cluster volume fraction of 25%. Both structure and magnetism are size-dependent. Structural analysis of the 10 nm clusters indicate a distorted tetragonal body-centered cubic structure with lattice parameters a=0.315 and c=0.329 nm. The 4 nm clusters have a partially ordered tetragonal L10 structure with lattice parameters a=0.410 nm and c=0.395 nm. Magnetic properties of the clusters show evidence at …


Highly Spin-Polarized Conducting State At The Interface Between Nonmagnetic Band Insulators: Laalo3/Fes2 (001), John D. Burton, Evgeny Y. Tsymbal Jan 2011

Highly Spin-Polarized Conducting State At The Interface Between Nonmagnetic Band Insulators: Laalo3/Fes2 (001), John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

First-principles density functional calculations demonstrate that a spin-polarized two-dimensional conducting state can be realized at the interface between two nonmagnetic band insulators. The (001) surface of the diamagnetic insulator FeS2 (pyrite) supports a localized surface state deriving from Fe d orbitals near the conduction band minimum. The deposition of a few unit cells of the polar perovskite oxide LaAlO3 leads to electron transfer into these surface bands, thereby creating a conducting interface. The occupation of these narrow bands leads to an exchange splitting between the spin subbands, yielding a highly spin-polarized conducting state distinct from the rest of …


Metallic And Insulating Oxide Interfaces Controlled By Electronic Correlations, H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, Manish K. Niranjan, C. T. Nelson, Y. Zhang, D. Su, C. M. Folkman, S. H. Baek, S. Lee, K. Janicka, Y. Zhu, X. Q. Pan, D. D. Fong, Evgeny Y. Tsymbal, M. S. Rzchowski, Chang-Beom Eom Jan 2011

Metallic And Insulating Oxide Interfaces Controlled By Electronic Correlations, H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, Manish K. Niranjan, C. T. Nelson, Y. Zhang, D. Su, C. M. Folkman, S. H. Baek, S. Lee, K. Janicka, Y. Zhu, X. Q. Pan, D. D. Fong, Evgeny Y. Tsymbal, M. S. Rzchowski, Chang-Beom Eom

Evgeny Tsymbal Publications

The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [(R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO3) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local …


Transport Spin Polarization Of High-Curie Temperature Mnbi Films, Parashu Kharel, P. Thapa, Pavel V. Lukashev, Renat F. Sabirianov, Evgeny Y. Tsymbal, D. J. Sellmyer, Boris Nadgorny Jan 2011

Transport Spin Polarization Of High-Curie Temperature Mnbi Films, Parashu Kharel, P. Thapa, Pavel V. Lukashev, Renat F. Sabirianov, Evgeny Y. Tsymbal, D. J. Sellmyer, Boris Nadgorny

Evgeny Tsymbal Publications

We report on the study of the structural, magnetic, and transport properties of highly textured MnBi films with the Curie temperature of 628 K. In addition to detailed measurements of resistivity and magnetization, we measure transport spin polarization of MnBi by Andreev reflection spectroscopy and perform fully relativistic band-structure calculations of MnBi. A spin polarization from 51% ± 1% to 63% ± 1% is observed, consistent with the calculations and with an observation of a large magnetoresistance in MnBi contacts. The band-structure calculations indicate that in spite of almost identical densities of states at the Fermi energy, the large disparity …


Metastability Of Free Cobalt And Iron Clusters: A Possible Precursor To Bulk Ferromagnetism, Xiaoshan Xu, Shuangye Yin, Ramiro Moro, Anthony Liang, John Bowlan, Walt A. De Heer Jan 2011

Metastability Of Free Cobalt And Iron Clusters: A Possible Precursor To Bulk Ferromagnetism, Xiaoshan Xu, Shuangye Yin, Ramiro Moro, Anthony Liang, John Bowlan, Walt A. De Heer

Xiaoshan Xu Papers

Homonuclear cobalt and iron clusters CoN and FeN measured in a cryogenic molecular beam exist in two states with distinct magnetic moments (μ), polarizabilities, and ionization potentials, indicating distinct valences. The μ is approximately quantized: μN ~ 2B in the ground states and μN* ~ NμB in the excited states for Co; μN ~ 3N μB and μN * ~ B for Fe. At a large size, the average μ of the two states converges to the bulk value with diminishing ionization potential differences. …


Resonant Photoemission Of Rare Earth Doped Gan Thin Films, S. R. Mchale, J. W. Mcclory, J. C. Petrosky, J. Wu, R. Palai, Yaroslav B. Losovyj, Peter A. Dowben Jan 2011

Resonant Photoemission Of Rare Earth Doped Gan Thin Films, S. R. Mchale, J. W. Mcclory, J. C. Petrosky, J. Wu, R. Palai, Yaroslav B. Losovyj, Peter A. Dowben

Peter Dowben Publications

The 4d → 4f Fano resonances for various rare earth doped GaN thin films (RE = Gd, Er, Yb) were investigated using synchrotron photoemission spectroscopy. The resonant photoemission Fano profiles show that the major Gd and Er rare earth 4f weight is at about 5–6 eV below the valence band maximum, similar to the 4f weights in the valence band of many other rare earth doped semiconductors. For Yb, there is very little resonant enhancement of the valence band of Yb doped GaN, consistent with a largely 4f14 occupancy.


Schottky Barrier Formation At The Au To Rare Earth Doped Gan Thin Film Interface, S. R. Mchale, J. W. Mcclory, J. C. Petrosky, J. Wu, R. Palai, Yaroslav B. Losovyj, Peter A. Dowben Jan 2011

Schottky Barrier Formation At The Au To Rare Earth Doped Gan Thin Film Interface, S. R. Mchale, J. W. Mcclory, J. C. Petrosky, J. Wu, R. Palai, Yaroslav B. Losovyj, Peter A. Dowben

Peter Dowben Publications

The Schottky barriers formed at the interface between gold and various rare earth doped GaN thin films (RE = Yb, Er, Gd) were investigated in situ using synchrotron photoemission spectroscopy. The resultant Schottky barrier heights were measured as 1.68 ± 0.1 eV (Yb:GaN), 1.64 ± 0.1 eV (Er:GaN), and 1.33 ± 0.1 eV (Gd:GaN). We find compelling evidence that thin layers of gold do not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. Furthermore, the trend of the Schottky barrier heights follows the trend of the rare earth metal work function.


Mesoscale Flux-Closure Domain Formation In Single-Crystal Batio3, R. G.P. Mcquaid, L. J. Mcgilly, Pankaj Sharma, Alexei Gruverman, J. M. Gregg Jan 2011

Mesoscale Flux-Closure Domain Formation In Single-Crystal Batio3, R. G.P. Mcquaid, L. J. Mcgilly, Pankaj Sharma, Alexei Gruverman, J. M. Gregg

Alexei Gruverman Publications

Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of …


Tailoring A Two-Dimensional Electron Gas At The Laalo3 ∕ Srtio3 (001) Interface By Epitaxial Strain, C. W. Bark, D. A. Felker, Yong Wang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C. B. Eom Jan 2011

Tailoring A Two-Dimensional Electron Gas At The Laalo3 ∕ Srtio3 (001) Interface By Epitaxial Strain, C. W. Bark, D. A. Felker, Yong Wang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C. B. Eom

Evgeny Tsymbal Publications

Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these unique systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3∕SrTiO3 heterointerface remains …


A Giant Tunneling Electroresistance Effect Driven By Electrically Controlled Spin Valve At A Complex Oxide Interface, John D. Burton, Evgeny Y. Tsymbal Jan 2011

A Giant Tunneling Electroresistance Effect Driven By Electrically Controlled Spin Valve At A Complex Oxide Interface, John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La1-xSrxMnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La1-xSrxMnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.