Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei Jul 2021

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei

Mathematics Faculty Publications

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex …


Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni Apr 2021

Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni

Chemistry Faculty Publications

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past …


Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace Jan 2021

Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace

Theses and Dissertations--Physics and Astronomy

Material properties are used in a wide variety of theoretical models of material behavior. Descriptive properties quantify the nature, structure, or composition of the material. Behavioral properties quantify the response of the material to an imposed condition. The central question of this work concerns the prediction of behavioral properties from previously determined descriptive properties through hierarchical multi-scale, multiphysics models implemented as numerical simulations. Applications covered focus on mass transport models, including sequential enzyme-catalyzed reactions in systems biology, and an industrial chemical process in a common reaction medium.


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman Aug 2018

Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman

Chemistry Faculty Publications

Understanding the acid–base behavior of carboxylic acids on aqueous interfaces is a fundamental issue in nature. Surface processes involving carboxylic acids such as acetic and pyruvic acids play roles in (1) the transport of nutrients through cell membranes, (2) the cycling of metabolites relevant to the origin of life, and (3) the photooxidative processing of biogenic and anthropogenic emissions in aerosols and atmospheric waters. Here, we report that 50% of gaseous acetic acid and pyruvic acid molecules transfer a proton to the surface of water at pH 2.8 and 1.8 units lower than their respective acidity constants pKa …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …