Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes Jun 2014

Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes

Brian Storey

Nonlinear phenomena including multiple equilibria and spontaneous oscillations are common in fluid networks containing either multiple phases or constituents. In many systems, such behavior might be attributed to the complicated geometry of the network, the complex rheology of the constituent fluids, or, in the case of microvascular blood flow, biological control. In this paper we investigate two examples of a simple three-node fluid network containing two miscible Newtonian fluids of differing viscosities, the first modeling microvascular blood flow and the second modeling stratified laminar flow. We use a combination of analytic and numerical techniques to identify and track saddle-node and …


A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonochemistry involves focusing acoustic energy through cavitation bubbles to increase chemical activity. The violent bubble collapses lead to temperatures of several thousand kelvin, which drive chemical reactions. In previous work, we gave a detailed computational model of a single bubble collapse, taking into account phase change, mass diffusion, heat diffusion and chemical reactions. All of these phenomena are important in determining the conditions at collapse. The present work involves development of a much simpler model that includes all the physics relevant to the determination of the reaction products. Comparisons with the more detailed computations are made; the reduced model is …


Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonoluminescence is the production of light from acoustically forced bubbles; sonochemistry is a related chemical processing technique. The two phenomena share a sensitive dependence on the liquid phase. The present work is an investigation of the fate and consequences of water vapour in the interior of strongly forced argon micro–bubbles. Due to the extreme nonlinearity of the volume oscillations, excess water vapour is trapped in the bubble during a rapid inertial collapse. Water vapour is prevented from exiting by relatively slow diffusion and non–equilibrium condensation at the bubble wall. By reducing the compression heating of the mixture and through primarily …


Temperature Distribution In An Oscillatory Flow With A Sinusoidal Wall Temperature, Eduardo Ramos, Brian Storey, Fernando Sierra, Raul Zuniga, Andriy Avramenko Jul 2012

Temperature Distribution In An Oscillatory Flow With A Sinusoidal Wall Temperature, Eduardo Ramos, Brian Storey, Fernando Sierra, Raul Zuniga, Andriy Avramenko

Brian Storey

The temperature field generated by an oscillatory boundary layer flow in the presence of a wall with a sinusoidal temperature distribution is analyzed. A linear perturbation method is used to find closed form analytical solutions for the temperature field when the amplitude of the velocity oscillation is small. The analytical solutions only consider long-time behavior when the temperature fields oscillate with the frequency of the flow. The structure of the equation that governs the temperature correction due to convection is similar to that of diffusive waves with the solution consisting of traveling or standing waves. The temperature distribution is also …


Nonextensive Statistical Mechanics For Rotating Quasi-Two-Dimensional Turbulence, Sunghwan Jung, Brian Storey, Julien Aubert, Harry Swinney Jul 2012

Nonextensive Statistical Mechanics For Rotating Quasi-Two-Dimensional Turbulence, Sunghwan Jung, Brian Storey, Julien Aubert, Harry Swinney

Brian Storey

We have conducted experiments on an asymmetrically forced quasi-two-dimensional turbulent flow in a rapidly rotating annulus. Assuming conservation of potential enstrophy and energy, we maximize a nonextensive entropy function to obtain the azimuthally averaged vorticity as a function of radial position. The predicted vorticity profile is in good accord with the observations. A nonextensive formalism is appropriate because long-range correlations between small-scale vortices give rise to large coherent structures in the turbulence. We also derive probability distribution functions for the vorticity from both extensive and nonextensive entropies, and we find that the prediction from nonextensive theory is in better accord …


Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr Mar 2012

Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr

Brian Storey

We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity—sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.