Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Chemistry

External Link

Articles

Articles 1 - 3 of 3

Full-Text Articles in Physics

A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonochemistry involves focusing acoustic energy through cavitation bubbles to increase chemical activity. The violent bubble collapses lead to temperatures of several thousand kelvin, which drive chemical reactions. In previous work, we gave a detailed computational model of a single bubble collapse, taking into account phase change, mass diffusion, heat diffusion and chemical reactions. All of these phenomena are important in determining the conditions at collapse. The present work involves development of a much simpler model that includes all the physics relevant to the determination of the reaction products. Comparisons with the more detailed computations are made; the reduced model is …


Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonoluminescence is the production of light from acoustically forced bubbles; sonochemistry is a related chemical processing technique. The two phenomena share a sensitive dependence on the liquid phase. The present work is an investigation of the fate and consequences of water vapour in the interior of strongly forced argon micro–bubbles. Due to the extreme nonlinearity of the volume oscillations, excess water vapour is trapped in the bubble during a rapid inertial collapse. Water vapour is prevented from exiting by relatively slow diffusion and non–equilibrium condensation at the bubble wall. By reducing the compression heating of the mixture and through primarily …


Dynamical Signature Of The Mott-Hubbard Transition In Ni(S,Se)(2), Yevgeniya Zastavker, Anke Husmann, Deborah Jin, Thomas Rosenbaum, X Yao, J Honig Jun 2012

Dynamical Signature Of The Mott-Hubbard Transition In Ni(S,Se)(2), Yevgeniya Zastavker, Anke Husmann, Deborah Jin, Thomas Rosenbaum, X Yao, J Honig

Yevgeniya V. Zastavker

The transition metal chalcogenide Ni(S,Se)2 is one of the few highly correlated, Mott-Hubbard systems without a strong first-order structural distortion that normally cuts off the critical behavior at the metal-insulator transition. The zero-temperature (T) transition was tuned with pressure, and significant deviations were found near the quantum critical point from the usual T1/2 behavior of the conductivity characteristic of electron-electron interactions in the presence of disorder. The transport data for pressure and temperature below 1 kelvin could be collapsed onto a universal scaling curve.