Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Series

2008

Ion-Molecule Collisions

Articles 1 - 2 of 2

Full-Text Articles in Physics

Interference Effects Due To Projectile Target Nucleus Scattering In Single Ionization Of H₂ By 75-Kev Proton Impact, Jason S. Alexander, Aaron C. Laforge, Ahmad Hasan, Z. S. Machavariani, M. F. Ciappina, R. D. Rivarola, Don H. Madison, Michael Schulz Dec 2008

Interference Effects Due To Projectile Target Nucleus Scattering In Single Ionization Of H₂ By 75-Kev Proton Impact, Jason S. Alexander, Aaron C. Laforge, Ahmad Hasan, Z. S. Machavariani, M. F. Ciappina, R. D. Rivarola, Don H. Madison, Michael Schulz

Physics Faculty Research & Creative Works

Doubly differential cross sections (DDCSs) for single ionization of molecular hydrogen by 75-keV proton impact have been measured and calculated as a function of the projectile scattering angle and energy loss. Interference structures are observed in the scattering angular dependence of the DDCSs, which disappear, however, at electron speeds near the projectile speed. The comparison to our calculations shows that the projectile-target nucleus interaction plays a central role. Furthermore, our data suggest that for a given scattering angle, ionization favors well-defined molecular orientations.


Charge Exchange And X-Ray Emission Cross Sections For Multiply Charged Ions Colliding With H₂O, Sebastian Otranto, Ronald E. Olson Feb 2008

Charge Exchange And X-Ray Emission Cross Sections For Multiply Charged Ions Colliding With H₂O, Sebastian Otranto, Ronald E. Olson

Physics Faculty Research & Creative Works

Total and state selective nl-electron capture cross sections are presented for highly charged ions Z=4-10, 14, 18, and 26 colliding with water molecules. The energy range investigated was from 10 eV/amu (v=0.02 a.u.) to 100 keV/amu (v=2 a.u.). An initialization for the 1B1 and 3A1 orbitals of the water molecule is introduced based on the one center expansion of Moccia and compared to our previous studies based on a hydrogenic approximation within the microcanonical ensemble. The Z dependence of the calculated total cross sections is in reasonable agreement with the recent data of Mawhorter et al. [Phys. Rev. A 75, …