Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings Dec 2021

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings

Student Scholar Symposium Abstracts and Posters

Nanofabrication processes are widely used to make the integrated circuits and computer chips that are ubiquitous in today’s technology. These fabrication processes can also be applied to the creation of nanophotonic devices. The ways in which we apply these fabrication techniques in the field of photonics is often constrained by the technologies used for electronics manufacturing which presents an interesting engineering challenge. These limitations include availability and cost of certain fabrication equipment and techniques required to create state-of-the-art nanophotonic devices. Through work with the University of California Irvine nano-fabrication cleanroom, we designed and fabricated various integrated photonic components including grating …


Integrated Photonic Device, Brittney Kuhn May 2020

Integrated Photonic Device, Brittney Kuhn

Student Scholar Symposium Abstracts and Posters

In computer mediated communication networks, information is typically encoded optically to transmit signals over long distances. At a network node, the optical signal is transformed into the electrical domain, processed electronically, and transformed back to an optical state to reach its destination. Transitioning between optical and electrical encoding of the signal is a potential security weak point, especially for quantum communication links. If information can remain in one state as it travels through the network, then security breaches can be detected and dealt with more easily. Furthermore, keeping the information in one state can reduce power consumption in the network. …


Compressively Characterizing High-Dimensional Entangled States With Complementary, Random Filtering, Gregory A. Howland, Samuel H. Knarr, James Schneeloch, Daniel J. Lum, John C. Howell May 2016

Compressively Characterizing High-Dimensional Entangled States With Complementary, Random Filtering, Gregory A. Howland, Samuel H. Knarr, James Schneeloch, Daniel J. Lum, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The resources needed to conventionally characterize a quantum system are overwhelmingly large for high-dimensional systems. This obstacle may be overcome by abandoning traditional cornerstones of quantum measurement, such as general quantum states, strong projective measurement, and assumption-free characterization. Following this reasoning, we demonstrate an efficient technique for characterizing high-dimensional, spatial entanglement with one set of measurements. We recover sharp distributions with local, random filtering of the same ensemble in momentum followed by position—something the uncertainty principle forbids for projective measurements. Exploiting the expectation that entangled signals are highly correlated, we use fewer than 5000 measurements to characterize a 65,536-dimensional state. …


Technical Advantages For Weak-Value Amplification: When Less Is More, Andrew N. Jordan, Julián Martínez-Rincón, John C. Howell Sep 2013

Technical Advantages For Weak-Value Amplification: When Less Is More, Andrew N. Jordan, Julián Martínez-Rincón, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The technical merits of weak-value-amplification techniques are analyzed. We consider models of several different types of technical noise in an optical context and show that weak-value-amplification techniques (which only use a small fraction of the photons) compare favorably with standard techniques (which use all of them). Using the Fisher-information metric, we demonstrate that weak-value techniques can put all of the Fisher information about the detected parameter into a small portion of the events and show how this fact alone gives technical advantages. We go on to consider a time-correlated noise model and find that a Fisher-information analysis indicates that the …


Efficient High-Dimensional Entanglement Imaging With A Compressive-Sensing Double-Pixel Camera, Gregory A. Howland, John C. Howell Oct 2012

Efficient High-Dimensional Entanglement Imaging With A Compressive-Sensing Double-Pixel Camera, Gregory A. Howland, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n2/log(n) for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that …