Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne Apr 2015

Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne

Krishna C. Mandal

No abstract provided.


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Jan 2015

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Guru Subramanyam

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the …


Enhanced Spin-Dependent Tunneling Magnetoresistance In Magnetite Films Coated By Polystyrene, Wendong Wang, Leszek Malkinski, Jinke Tang Oct 2014

Enhanced Spin-Dependent Tunneling Magnetoresistance In Magnetite Films Coated By Polystyrene, Wendong Wang, Leszek Malkinski, Jinke Tang

Jinke Tang

Hematite films were deposited by magnetron sputtering. A phase transformation from hematite to magnetite occurred when polystyrene (PS) coated hematite films were annealed above 200 °C in hydrogen flow. Giant negative magnetoresistance (MR) was observed with the best MR ratio of over 8% (at room temperature and in a field of 5.5 T) found in samples annealed at 230 °C. The temperature dependence of the resistivity is characteristic of intergranular tunneling. After the PS layer was removed and the films annealed again at 230 °C in hydrogen flow, the resistivity increased by about one order of magnitude and the MR …


Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2006

Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

Thermal effects on domain orientation in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated by using in situ x-ray diffraction with an area detector. In the case of a soft PZT, it is found that the texture parameter called multiples of a random distribution (MRD) initially increases with temperature up to approximately 100 °C and then falls to unity at temperatures approaching the Curie temperature, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. The relationship between the mechanical strain energy and domain wall mobility with temperature is discussed.