Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Arun Bansil

Selected Works

Doping dependence

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nodeless D-Wave Superconducting Pairing Due To Residual Antiferromagnetism In Underdoped Pr2-Xcexcuo4-Δ, Tanmoy Das, R. S. Markiewicz, A. Bansil Apr 2012

Nodeless D-Wave Superconducting Pairing Due To Residual Antiferromagnetism In Underdoped Pr2-Xcexcuo4-Δ, Tanmoy Das, R. S. Markiewicz, A. Bansil

Arun Bansil

We investigate the doping dependence of the penetration depth versus temperature in electron-doped Pr₂₋ₓCeₓCuO4-δ using a model which assumes the uniform coexistence of (mean-field) antiferromagnetism and superconductivity. Despite the presence of a dₓ2₋y2 pairing gap in the underlying spectrum, we find nodeless behavior of the low-T penetration depth in the underdoped case, in accord with experimental results. As doping increases, a linear-in-T behavior of the penetration depth, characteristic of d-wave pairing, emerges as the lower magnetic band crosses the Fermi level and creates a nodal Fermi surface pocket.


Optical Model-Solution To The Competition Between A Pseudogap Phase And A Charge-Transfer-Gap Phase In High-Temperature Cuprate Superconductors, Tanmoy Das, R. S. Markiewicz, A. Bansil Apr 2012

Optical Model-Solution To The Competition Between A Pseudogap Phase And A Charge-Transfer-Gap Phase In High-Temperature Cuprate Superconductors, Tanmoy Das, R. S. Markiewicz, A. Bansil

Arun Bansil

We present a theoretical framework for a quantitative understanding of the full doping dependence of the optical spectra of the cuprates. In accord with experimental observations, the computed spectra show how the high-energy charge-transfer (CT) gap features persist in the overdoped regime even after the midinfrared (MIR) peak originating from the pseudogap has collapsed in a quantum critical point. In this way, we reconcile the opposing tendencies of the MIR and CT peaks to shift in opposite directions in the optical spectra with increasing doping. The competition between the pseudogap and the CT gap also results in rapid loss of …