Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Virginia Commonwealth University

2014

Discipline
Keyword
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Physics

High Speed Atomic Force Microscope Design Using Dvd Optics, Thomas Carlson May 2014

High Speed Atomic Force Microscope Design Using Dvd Optics, Thomas Carlson

Theses and Dissertations

We examine the design of a high speed atomic force microscope using an optical pickup from a commercially available compact disc/digital versatile disc drive. An investigation of the commercial optical pickup is done with the goal of determining how it can be used for dimensional measurements on nanometer scale. An evaluation of noise sources, imaging capabilities, and functionality is performed.


Investigating Mechanical Properties Of Metallic Nanowires Using Molecular Dynamics, Alex Khammang Apr 2014

Investigating Mechanical Properties Of Metallic Nanowires Using Molecular Dynamics, Alex Khammang

Theses and Dissertations

Metallic nanowires have useful applications in scanning tunneling microscopes and atomic force microscopes due to their unique sensitivity to force and electricity. These unique properties arise because of the large surface area to volume ratio. One of these properties is that introducing twinning planes the mechanical properties of metallic nanowires can be altered. The effects of twinning planes on metallic nanowires were studied using molecular dynamics simulations. Silver, copper, and nickel nanowires with and without twinning planes were simulated with engineering strain until the first yielding stress was obtained. The radial simulations showed that as the radius of twinned nanowires …


Aromaticity Rules In The Development Of Negative Ions, Brandon Child Apr 2014

Aromaticity Rules In The Development Of Negative Ions, Brandon Child

Theses and Dissertations

Organic molecules are known for their stability due to aromaticity. Superhalogens, on the other hand, are highly reactive anions, whose electron affinity is larger than that of chlorine. This thesis, using first principles calculations, explores possible methods for creation of superhalogen aromatic molecules while attempting to also develop a fundamental understanding of the physical properties behind their creation. The first method studied uses anionic cyclopentadienyl and enhances its electron affinity through ligand substitution or ring annulation in combination with core substitutions. The second method studies the possibilities of using benzene, which has a negative electron affinity (EA), as a core …


18-Electron Rule Inspired Zintl-Like Ions Composed Of All Transition Metals, Jian Zhou, Santanab Giri, Purusottam Jena Jan 2014

18-Electron Rule Inspired Zintl-Like Ions Composed Of All Transition Metals, Jian Zhou, Santanab Giri, Purusottam Jena

Physics Publications

Zintl phase compounds constitute a unique class of compounds composed of metal cations and covalently bonded multiply charged cluster anions. Potential applications of these materials in solution chemistry and thermoelectric materials have given rise to renewed interest in the search for new Zintl ions. Up to now these ions have been mostly composed of group 13, 14, and 15 post-transition metal elements and no Zintl ions composed of all transition metal elements are known. Using gradient corrected density functional theory we show that the 18-electron rule can be applied to design a new class of Zintl-like ions composed of all …


Potential Of Zro Clusters As Replacement Pd Catalyst, Swayamprabha Behera, Nicholas King, Devleena Samanta, Puru Jena Jan 2014

Potential Of Zro Clusters As Replacement Pd Catalyst, Swayamprabha Behera, Nicholas King, Devleena Samanta, Puru Jena

Physics Publications

Atomic clusters with specific size and composition and mimicking the chemistry of elements in the periodic table are commonly known as superatoms. It has been suggested that superatoms could be used to replace elements that are either scarce or expensive. Based on a photoelectron spectroscopy experiment of negatively charged ions, Castleman and co-workers [Proc. Natl. Acad. Sci. U.S.A.107, 975 (2010)] have recently shown that atoms of Ni, Pd, and Pt which are well known for their catalytic properties, have the same electronic structure as their counterpart isovalent diatomic species, TiO, ZrO, and WC, respectively. Based on this similarity they have …


The Viability Of Aluminum Zintl Anion Moieties Within Magnesium-Aluminum Clusters, Haopeng Wang, Yeon Jae Ko, Xinxing Zhang, Gerd Gantefoer, Hansgeorg Schnoeckel, Bryan W. Eichhorn, Puru Jena, Boggavarapu Kiran, Anil K. Kandalam, Kit H. Bowen Jr. Jan 2014

The Viability Of Aluminum Zintl Anion Moieties Within Magnesium-Aluminum Clusters, Haopeng Wang, Yeon Jae Ko, Xinxing Zhang, Gerd Gantefoer, Hansgeorg Schnoeckel, Bryan W. Eichhorn, Puru Jena, Boggavarapu Kiran, Anil K. Kandalam, Kit H. Bowen Jr.

Physics Publications

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg m Al n (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations …


Aluminum Zintl Anion Moieties Within Sodium Aluminum Clusters, Haopeng Wang, Xinxing Zhang, Yeon Jae Ko, Andrej Grubisic, Xiang Li, Gerd Gantefoer, Hansgeorg Schnoeckel, Bryan W. Eichhorn, Mal-Soon Lee, Puru Jena, Anil K. Kandalam, Boggavarapu Kiran, Kit H. Bowen Jr. Jan 2014

Aluminum Zintl Anion Moieties Within Sodium Aluminum Clusters, Haopeng Wang, Xinxing Zhang, Yeon Jae Ko, Andrej Grubisic, Xiang Li, Gerd Gantefoer, Hansgeorg Schnoeckel, Bryan W. Eichhorn, Mal-Soon Lee, Puru Jena, Anil K. Kandalam, Boggavarapu Kiran, Kit H. Bowen Jr.

Physics Publications

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na m Al n , were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectrawere measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stickspectra), and fragment molecular orbital based correlation diagrams.


Live Cell Interferometry Quantifies Dynamics Of Biomass Partitioning During Cytokinesis, Thomas A. Zangle, Michael A. Teitell, Jason Reed Jan 2014

Live Cell Interferometry Quantifies Dynamics Of Biomass Partitioning During Cytokinesis, Thomas A. Zangle, Michael A. Teitell, Jason Reed

Physics Publications

The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased …


Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov Jan 2014

Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov

Physics Publications

Point defects in GaN were studied with time-resolved photoluminescence (PL). The effects of temperature and excitation intensity on defect-related PL have been investigated theoretically and experimentally. A phenomenological model, based on rate equations, explains the dependence of the PL intensity on excitation intensity, as well as the PL lifetime and its temperature dependence. We demonstrate that time-resolved PL measurements can be used to find the concentrations of free electrons and acceptors contributing to PL in n-type semiconductors.


Surface Diffusion Driven Morphological Instability In Free-Standing Nickel Nanorod Arrays, Ebtihaj Alrashid Jr., Dexian Ye Jan 2014

Surface Diffusion Driven Morphological Instability In Free-Standing Nickel Nanorod Arrays, Ebtihaj Alrashid Jr., Dexian Ye

Physics Publications

Metallic nanostructures are thermodynamically unstable due to the excess of energy of large numbers of surface atoms. Morphological instability, such as Rayleigh breakup, sintering, and coalescence, can be observed at a temperature much lower than the bulk melting point of the metal. We study the morphological and crystalline evolution of well-aligned free-standing nickelnanorod arrays at elevated temperatures up to 600 °C. The as-deposited nickel nanorods are faceted with sharp nanotips, which are deformed at annealing temperatures higher than 400 °C due to strong surface diffusion. A mud-crack like pattern is formed in the samples annealed above 400 °C, leading to …


Lattice Thermal Conductivity In Bulk And Nanosheet Naxcoo2, Denis Demchenko, David B. Ameen Jan 2014

Lattice Thermal Conductivity In Bulk And Nanosheet Naxcoo2, Denis Demchenko, David B. Ameen

Physics Publications

In this paper we present the results of calculations of the lattice thermal conductivity of layered complex metal oxide NaxCoO2 within the Green–Kubo theory. Using NaxCoO2 we identify the two competing mechanisms responsible for the favorable scaling properties of the Green–Kubo method for calculating the lattice thermal conductivity. The artificial correlations of the heat flux fluctuations due to the finite size of the supercells are partially cancelled by the missing long wavelength acoustic phonon modes. We compute the lattice thermoelectric properties of bulk NaxCoO2 with varying stoichiometry, structural defects, and temperature. …


Green Luminescence In Mg-Doped Gan, Michael A. Reshchikov, Denis Demchenko, J. D. Mcnamara, S. Fernández-Garrido, R. Calarco Jan 2014

Green Luminescence In Mg-Doped Gan, Michael A. Reshchikov, Denis Demchenko, J. D. Mcnamara, S. Fernández-Garrido, R. Calarco

Physics Publications

A majority of the point defects in GaN that are responsible for broad photoluminescence (PL) bands remain unidentified. One of them is the green luminescence band (GL2) having a maximum at 2.35 eV which was observed previously in undoped GaN grown by molecular-beam epitaxy in Ga-rich conditions. The same PL band was observed in Mg-doped GaN, also grown in very Ga-rich conditions. The unique properties of the GL2 band allowed us to reliably identify it in different samples. The best candidate for the defect which causes the GL2 band is a nitrogen vacancy (VN). We propose that transitions of electrons …


Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov Jan 2014

Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov

Physics Publications

Mechanisms of thermal quenching of photoluminescence (PL) related to defects insemiconductors are analyzed. We conclude that the Schön-Klasens (multi-center) mechanism of the thermal quenching of PL is much more common for defects in III–V and II–VI semiconductorsas compared to the Seitz-Mott (one-center) mechanism. The temperature dependencies of PLare simulated with a phenomenological model. In its simplest version, three types of defects are included: a shallow donor, an acceptor responsible for the PL, and a nonradiative center that has the highest recombination efficiency. The case of abrupt and tunable thermal quenching ofPL is considered in more detail. This phenomenon is predicted …


Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov Jan 2014

Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov

Physics Publications

Point defects in GaN were studied with time-resolved photoluminescence (PL). The effects of temperature and excitation intensity on defect-related PL have been investigated theoretically and experimentally. A phenomenological model, based on rate equations, explains the dependence of the PL intensity on excitation intensity, as well as the PL lifetime and its temperature dependence. We demonstrate that time-resolved PL measurements can be used to find the concentrations of free electrons and acceptors contributing to PL in n-type semiconductors.


Carbon Defects As Sources Of The Green And Yellow Luminescence Bands In Undoped Gan, Michael A. Reshchikov, Denis Demchenko, A. Usikov, H. Helava, Yu Makarov Jan 2014

Carbon Defects As Sources Of The Green And Yellow Luminescence Bands In Undoped Gan, Michael A. Reshchikov, Denis Demchenko, A. Usikov, H. Helava, Yu Makarov

Physics Publications

In high-purity GaN grown by hydride vapor phase epitaxy, the commonly observed yellow luminescence (YL) band gives way to a green luminescence (GL) band at high excitation intensity. We propose that the GL band with a maximum at 2.4 eV is caused by transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The YL band, related to transitions via the −/0 level of the same defect, has a maximum at 2.1 eV and can be observed only for some high-purity samples. However, in less pure GaN samples, where no GL band is observed, …


Aromatic Superhalogens, Brandon Child, Santanab Giri, Scott Gronert, Puru Jena Jan 2014

Aromatic Superhalogens, Brandon Child, Santanab Giri, Scott Gronert, Puru Jena

Physics Publications

No organic molecules with electron affinities near or above those of halogens are known. We show for the first time that aromaticity rules can be used to design molecules with electron affinities far exceeding those of halogen atoms either by tailoring the ligands of cyclopentadienyl or by multiple benzo-annulations of cyclopentadienyl in conjunction with the substitution of CH groups with isoelectronic N atoms. Results based on density functional theory reveal that the electron affinities of some of these organic molecules can reach as high as 5.59 eV, thus opening the door to new class of superhalogens that contain neither a …


Self-Consistent Determination Of Hubbard U For Explaining The Anomalous Magnetism Of The Gd13 Cluster, Kun Tao, Jian Zhou, Qiang Sun, Qian Wang, V. S. Stepanyuk, Puru Jena Jan 2014

Self-Consistent Determination Of Hubbard U For Explaining The Anomalous Magnetism Of The Gd13 Cluster, Kun Tao, Jian Zhou, Qiang Sun, Qian Wang, V. S. Stepanyuk, Puru Jena

Physics Publications

The effective on-site Coulomb interaction (Hubbard U) is an important parameter for studying strongly correlated systems. While U is determined empirically by fitting to bulk values, its value for a cluster with a finite number of atoms remains uncertain. Here, we choose Gd13 as a prototypical example of a strongly correlated cluster. Contrary to the well-known results in transition-metal clusters where magnetic moments of clusters are larger than their bulk, in Gd13 cluster the magnetic moment issmaller than its bulk value. Using density functional theory and the linear response approach, we determine U self-consistently for the cluster and apply …


Tailoring Li Adsorption On Graphene, Jian Zhou, Qiang Sun, Qian Wang, Puru Jena Jan 2014

Tailoring Li Adsorption On Graphene, Jian Zhou, Qiang Sun, Qian Wang, Puru Jena

Physics Publications

The technological potential of functionalized graphene has recently stimulated considerable interest in the study of the adsorption of metal atoms on graphene. However, a complete understanding of the optimal adsorption pattern of metal atoms on a graphene substrate has not been easy because of atomic relaxations at the interface and the interaction between metal atoms. We present a partial particle swarm optimization technique that allows us to efficiently search for the equilibrium geometries of metal atoms adsorbed on a substrate as a function of adatom concentration. Using Li deposition on graphene as an example we show that, contrary to previous …


Life2cl N (N = 4–6) Clusters: Double-Exchange Mediated Molecular Magnets, Kalpataru Pradhan, Purusottam Jena Jan 2014

Life2cl N (N = 4–6) Clusters: Double-Exchange Mediated Molecular Magnets, Kalpataru Pradhan, Purusottam Jena

Physics Publications

A systematic study of LiFe2Cl n (n = 4–6) clusters, based on gradient corrected density functional theory (DFT), shows that the electron contributed by Li can transform antiferromagnetic Fe2Cl n(n = 4 and 6) clusters into ferromagnetic clusters. In Fe2Cl6 (Fe2Cl4) cluster, the Fe atoms in +3 (+2) oxidation states are aligned antiferromagnetically, consistent with the super-exchange model. The extra electron from Li atom creates a charge disproportionation in the LiFe2Cl6(LiFe2Cl4) cluster that mediates the double-exchange interaction between the Fe atoms.Antiferromagnetic to ferromagnetic transition can also be induced by hole doping as seen to be the case with Fe2Cl5 which …


Fine Structure Of The Red Luminescence Band In Undoped Gan, Michael A. Reshchikov, A. Usikov, H. Helava, Yu. Makarov Jan 2014

Fine Structure Of The Red Luminescence Band In Undoped Gan, Michael A. Reshchikov, A. Usikov, H. Helava, Yu. Makarov

Physics Publications

Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of …


Green Luminescence In Mg-Doped Gan, Michael A. Reshchikov, Denis Demchenko, J. D. Mcnamara, S. Fernández-Garrido, R. Calarco Jan 2014

Green Luminescence In Mg-Doped Gan, Michael A. Reshchikov, Denis Demchenko, J. D. Mcnamara, S. Fernández-Garrido, R. Calarco

Physics Publications

A majority of the point defects in GaN that are responsible for broad photoluminescence (PL) bands remain unidentified. One of them is the green luminescence band (GL2) having a maximum at 2.35 eV which was observed previously in undoped GaN grown by molecular-beam epitaxy in Ga-rich conditions. The same PL band was observed in Mg-doped GaN, also grown in very Ga-rich conditions. The unique properties of the GL2 band allowed us to reliably identify it in different samples. The best candidate for the defect which causes the GL2 band is a nitrogen vacancy (VN). We propose that transitions of electrons …


Electronic Structure And Magnetic Properties Of Mn And Fe Impurities Near The Gaas (110) Surface, M. R. Mahani, M. Fhokrul Islam, A. Pertsova, C. M. Canali Jan 2014

Electronic Structure And Magnetic Properties Of Mn And Fe Impurities Near The Gaas (110) Surface, M. R. Mahani, M. Fhokrul Islam, A. Pertsova, C. M. Canali

Physics Publications

Combining density functional theory calculations and microscopic tight-binding models, we investigate theoretically the electronic and magnetic properties of individual substitutional transition-metal impurities (Mn and Fe) positioned in the vicinity of the (110) surface of GaAs. For the case of the [Mn2+]0 plus acceptor-hole (h) complex, the results of a tight-binding model including explicitly the impurity delectrons are in good agreement with approaches that treat the spin of the impurity as an effective classical vector. For the case of Fe, where both the neutral isoelectronic [Fe3+]0 and the ionized [Fe2+]− states are relevant to address scanning tunneling microscopy (STM) …


Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo Jan 2014

Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo

Graduate Research Posters

Electrospinning is a widely applicable technique that generates non-woven fibers in the micro and nano range. In this project two of its applications are highlighted namely filtration media and enhancement of wettability. The first project demonstrates that electrospinning can be used to produce new fiber filtration media with controlled microstructure. The bimodal and unimodal orthogonal and random filters were made and characterized against their filtration efficiency and pressure drop. Figure of Merit (FOM) was also calculated and discussed. It is shown that the FOM increases when the electrospun fibers are arranged into alternating layers of aligned course and fine fibers. …


An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson Jan 2014

An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson

Theses and Dissertations

Deformable image registration (DIR) is an essential tool in medical image processing. It provides a means to combine image datasets, allowing for intra-subject, inter-subject, multi-modality, and multi-instance analysis, as well as motion detection and compensation. One of the most popular DIR algorithms models the displacement vector field (DVF) as B-splines, a sum of piecewise polynomials with coefficients that enable local shape control. B-splines have many advantageous properties in the context of DIR, but they often struggle to adequately model steep local gradients and discontinuities. This dissertation addresses that limitation by proposing the replacement of conventional B-splines with a generalized formulation …


Characterization Of Individual Charged Au25(Sg)18 Clusters And Their Enhancement Of Single Molecule Mass Spectrometry, Christopher Angevine Jan 2014

Characterization Of Individual Charged Au25(Sg)18 Clusters And Their Enhancement Of Single Molecule Mass Spectrometry, Christopher Angevine

Theses and Dissertations

Metallic quantum clusters are stable structures that can exhibit many useful magnetic, chemical, and optical properties. Developing clusters for specific applications requires accurate methods for characterizing their physical and chemical properties. Most cluster characterization methods are ensemble-based measurements that can only measure the average values of the cluster properties. Single cluster measurements improve upon this by yielding information about the distribution of cluster parameters. This investigation describes the initial results on a new approach to detecting and characterizing individual gold nanoclusters (Au25(SG)18) in an aqueous solution with nanopore-based resistive pulse sensing. We also present a new application where the clusters …


First-Principles Studies On Graphene-Supported Transition Metal Clusters, Sanjubala Sahoo, Markus E. Gruner, Shiv N. Khanna, Peter Entel Jan 2014

First-Principles Studies On Graphene-Supported Transition Metal Clusters, Sanjubala Sahoo, Markus E. Gruner, Shiv N. Khanna, Peter Entel

Physics Publications

Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the …


Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov Jan 2014

Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov

Physics Publications

Mechanisms of thermal quenching of photoluminescence (PL) related to defects in semiconductors are analyzed. We conclude that the Schön-Klasens (multi-center) mechanism of the thermal quenching of PL is much more common for defects in III–V and II–VI semiconductors as compared to the Seitz-Mott (one-center) mechanism. The temperature dependencies of PL are simulated with a phenomenological model. In its simplest version, three types of defects are included: a shallow donor, an acceptor responsible for the PL, and a nonradiative center that has the highest recombination efficiency. The case of abrupt and tunable thermal quenching of PL is considered in more detail. …