Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical, Nonlinear, and Soft Matter Physics

Theses/Dissertations

2019

Articles 1 - 18 of 18

Full-Text Articles in Physics

Dimension Reduction Techniques For High Dimensional And Ultra-High Dimensional Data, Subha Datta Dec 2019

Dimension Reduction Techniques For High Dimensional And Ultra-High Dimensional Data, Subha Datta

Dissertations

This dissertation introduces two statistical techniques to tackle high-dimensional data, which is very commonplace nowadays. It consists of two topics which are inter-related by a common link, dimension reduction.

The first topic is a recently introduced classification technique, the weighted principal support vector machine (WPSVM), which is incorporated into a spatial point process framework. The WPSVM possesses an additional parameter, a weight parameter, besides the regularization parameter. Most statistical techniques, including WPSVM, have an inherent assumption of independence, which means the data points are not connected with each other in any manner. But spatial data violates this assumption. Correlation between …


Effects Of Impurities On Calcium Oxalate Crystallization As Measured By Atomic Force Microscopy, Himasha Wijesekara Dec 2019

Effects Of Impurities On Calcium Oxalate Crystallization As Measured By Atomic Force Microscopy, Himasha Wijesekara

Electronic Thesis and Dissertation Repository

Calcium oxalate crystals are found in kidney stones as either calcium oxalate monohydrate (COM) or calcium oxalate dihydrate (COD). COM crystals are the most abundant form as they are thermodynamically more stable than COD crystals under physiological conditions. Certain aspartic acid-rich molecules such as osteopontin (OPN) are known to affect stone formation by inhibiting COM and COD growth. We have studied COM {010} and COD {100} faces in the presence of OPN, poly-aspartic acid (poly-ASP) and synthetic peptides derived from OPN to investigate the inhibitor mechanism.

We observed that poly-ASP preferentially inhibits one particular direction of {010} faces on COM …


Coulombic And Non-Coulombic Effects Of Single And Overlapping Electric Double Layers With Surface Charge Regulation, Raviteja Vangara Dec 2019

Coulombic And Non-Coulombic Effects Of Single And Overlapping Electric Double Layers With Surface Charge Regulation, Raviteja Vangara

Chemical and Biological Engineering ETDs

The physical origin of charged interfaces involving electrolyte solutions is in the thermodynamic equilibrium between the surface reactive groups and certain dissolved ionic species in the bulk. This equilibrium is very strongly dependent on the precise local density of these species, also known as potential determining ions in the solution. The latter, however, is determined by the overall solution structure, which is dominated by the large number of solvent molecules relative to all solutes. Hence, the solvent contribution to the molecular structure is a crucial factor that determines the properties of electric double layers. Models that explicitly account for the …


Characterization Of The Anomalous Ph Of Aqueous Nanoemulsions, Kieran P. Ramos Oct 2019

Characterization Of The Anomalous Ph Of Aqueous Nanoemulsions, Kieran P. Ramos

Doctoral Dissertations

Aqueous water-in-oil nanoemulsions have emerged as a versatile tool for use in microfluidics, drug delivery, single-molecule measurements, and other research. Nanoemulsions are often prepared with perfluorocarbons which are remarkably biocompatbile due to their stability, low surface tension, lipophobicity, and hydrophobicity. Therefore it is often assumed that droplet contents are unperturbed by the perfluorinated surface. However, in microemulsions, which are similar to nanoemulsions, it is known that either the pH of the aqueous phase or the ionization constants of encapsulated molecules are different from bulk solution. There is also recent evidence of low pH in perfluorinated aqueous nanoemulsions. The current underlying …


Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini Sep 2019

Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini

Dissertations, Theses, and Capstone Projects

The objective of the dissertation is to illustrate the importance of the k-core dynamical model, by first presenting the stability analysis of the nonlinear k-core model and compare its solution to the most widely used linear model. Second, I show a real world application of the k-core model to describe properties of neural networks, specifically, the transition from conscious to subliminal perception.


Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li Sep 2019

Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li

Dissertations, Theses, and Capstone Projects

We study the underlying mechanism by which language processing occurs in the human brain using inference methods on functional magnetic resonance imaging data. The data analyzed stems from several cohorts of subjects; a monolingual group, a bilingual group, a healthy control group and one diseased case. We applied a complex statistical inference pipeline to determine the network structure of brain components involved with language. This healthy network reveals a fully connected triangular relationship between the pre-Supplementary Motor Area (pre-SMA), the Broca's Area (BA), and the ventral Pre-Motor Area (PreMA) in the left hemisphere. This "triangle'' shows consistently in all the …


Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel Aug 2019

Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel

Dissertations

The microstructure of voids in pure and hydrogen-rich amorphous silicon (a:Si) network was studied in ultra-large models of amorphous silicon, using classical and quantum- mechanical simulations, on the nanometer length scale. The nanostructure, particularly voids of device grade ultra-large models of a:Si was studied, in which observed three-dimensional realistic voids were extended using geometrical approach within the experimental limit of void-volume fractions. In device-grade simulated models, the effect of void morphology; size, shape, number density, and distribution on simulated scattering intensities in small- angle region were investigated. The evolution of voids on annealing below the crystallization temperature …


Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage Jul 2019

Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage

Electronic Thesis and Dissertation Repository

Water vapor is the most dominant greenhouse gas in Earth's atmosphere. It is highly variable and its variations strongly depend on changes in temperature. Atmospheric water vapor can be expressed as relative humidity (RH), the ratio of the partial pressure of water vapor in the mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a given temperature. Liquid water can exist as super-cooled water for temperatures between 0C to -38C. Thus, RH can be measured either relative to water (RHw) or to ice (RHi). RHi measurements are important in the upper tropospheric region, …


Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca Jul 2019

Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca

Doctoral Dissertations

This dissertation describes the synthesis and characterization of novel monomers and (co)polymer zwitterions that incorporate trialkylsulfonium cations. The novel materials presented herein constitute a unique type of polymer zwitterions that exhibit salt- and temperature-dependent water solubility as well as inherent reactivity. The behavior of these polymers in aqueous solutions, as nanostructures, and at liquid-liquid interfaces was studied; in all cases, the inherent reactivity of the polymers was harnessed towards the fabrication of novel polymers and soft materials. Following an introductory chapter, Chapter 2 describes the synthesis of sulfonium sulfonate monomers and polymer zwitterions. Both styrenic and methacrylic monomers were synthesized …


Calculating The Dimensionality Of The Brain, And Other Applications Of An Optimized Generalized Ising Model In Predicting Brain's Spontaneous Functions, Pubuditha M. Abeyasinghe Apr 2019

Calculating The Dimensionality Of The Brain, And Other Applications Of An Optimized Generalized Ising Model In Predicting Brain's Spontaneous Functions, Pubuditha M. Abeyasinghe

Electronic Thesis and Dissertation Repository

Understanding a system as complex as the human brain is a very demanding task. Directly working with structural and functional neuroimaging data has led to most of the understanding we have gained about the human brain. However, performing only the direct statistical comparisons on the empirical function and the structure does not fully explain the observed long-range functional correlations. Therefore, implementations of mathematical models to gain further understanding of the relationship between the structure and function of the brain is critical. Additionally, spontaneous functions of the brain can only be predicted using computer simulated models; which will be pivotal for …


Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh Mar 2019

Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh

Doctoral Dissertations

The polysaccharide cellulose is the main component of plant cell walls, so it is the most abundant polymer on Earth. While it is widely used in industry due to its remarkable properties, such as renewability and biodegradability, its biosynthesis is still not well understood. The large transmembrane protein Cellulose Synthase Complex (CSC) is responsible for synthesizing cellulose by polymerizing UDP glucose into the constituent glucan chains of cellulose. In this project, I used variable angle epi-fluorescence microscopy (VAEM) in combination with single-particle tracking to characterize the motion of GFP labeled CSCs in the hypocotyl of Arabidopsis thaliana (A. thaliana …


Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky Feb 2019

Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky

Dissertations, Theses, and Capstone Projects

My research focuses on the analytical and numerical study of seemingly completely different systems - the classical critical point of the liquid-gas transition and a quantum topological defect (dislocation) in solid Helium-4. The unifying theme, though, is Emergence - the appearance of unexpected qualities at large distance and time scales in these systems. Our results resolve the long standing controversy about the nature of the liquid-gas criticality by showing with high confidence that it is the same as that of Ising ferromagnet. In solid 4He, a quantum superclimbing dislocation, which is expected to be violating space-time symmetry according to …


Quantum Entanglement Of One-Dimensional Spinless Fermions, Emanuel Casiano-Diaz Jan 2019

Quantum Entanglement Of One-Dimensional Spinless Fermions, Emanuel Casiano-Diaz

Graduate College Dissertations and Theses

The constituents of a quantum many-body system can be inextricably linked, a phenomenon known as quantum entanglement. Entanglement can be used as a resource for quantum computing, quantum communication and detecting phase transitions, among others. The amount of entanglement can be quantified via the von Neumann and Rényi entropies, which have their origins in information theory.

In this work, the quantum entanglement between subsystems of a one dimen- sional lattice model of fermions is quantified. The von Neumann and Rényi entropies were calculated for two types of subsystems. In the first study, the subsystems were treated as two subsets of …


Repairable Moment-Resisting Steel Buildings, Heath William Pederson Jan 2019

Repairable Moment-Resisting Steel Buildings, Heath William Pederson

Electronic Theses and Dissertations

Current seismic design codes ensure life safety for buildings, but structural members may significantly yield or even fail under strong earthquakes. A new design approach is to implement connections that localize the yielding and failure to fuses. A more sophisticated approach is to be able to replace the fuses after the event. The present study was carried out to develop repairable moment-resisting (MR) connections for steel buildings and to investigate their seismic performance through nonlinear finite element analyses (FEA). Two details were proposed using buckling restrained fuses (BRFs) and buckling restrained reinforcement (BRR). Test data was collected from the literature …


Practical Chaos: Using Dynamical Systems To Encrypt Audio And Visual Data, Julia Ruiter Jan 2019

Practical Chaos: Using Dynamical Systems To Encrypt Audio And Visual Data, Julia Ruiter

Scripps Senior Theses

Although dynamical systems have a multitude of classical uses in physics and applied mathematics, new research in theoretical computer science shows that dynamical systems can also be used as a highly secure method of encrypting data. Properties of Lorenz and similar systems of equations yield chaotic outputs that are good at masking the underlying data both physically and mathematically. This paper aims to show how Lorenz systems may be used to encrypt text and image data, as well as provide a framework for how physical mechanisms may be built using these properties to transmit encrypted wave signals.


Giardia Lamblia Growth In Viscoelastic Fluids, Kelly Watanabe Jan 2019

Giardia Lamblia Growth In Viscoelastic Fluids, Kelly Watanabe

CMC Senior Theses

Giardia lamblia is a single-celled protozoan parasite that when ingested, causes diarrheal disease and infects 33% of people in developing countries. Previous studies observe Giardia in water-like fluids, but Giardia's infectious environment consists of viscoelastic mucus in the small intestine. Therefore, Giardia was cultured in viscoelastic fluids, and its population growth was observed in vitro. To create shear-thinning viscoelastic fluids, 0.2% and 0.4% long-chain polyacrylamide (LCPAM) was added to cell culture media. Giardia was cultured in control media, 0.2% LCPAM, and 0.4% LCPAM, and population growth was quantitatively determined over time. Increasing LCPAM concentration resulted in a solution with …


The Solvation Energy Of Ions In A Stockmayer Fluid, Cameron John Shock Jan 2019

The Solvation Energy Of Ions In A Stockmayer Fluid, Cameron John Shock

Dissertations, Master's Theses and Master's Reports

The solvation of ions in polar solvents has been a long studied system since the early twentieth century. A common technique to calculate the energy associated with ion solvation is the Born Solvation energy equation. This equation assumes an ion is placed in an incompressible, homogeneous dielectric, which is not necessarily representative of a real system. In this work the Stockmayer Fluid Model is used in a molecular dynamics simulation through the software LAMMPS to check the quantitative correctness of the Born equation. It is also shown how solvation energies of ions placed in polymerized and non-polymerized solvents differ. It …


Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou Jan 2019

Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou

Theses and Dissertations

The adhesion at solid/liquid interface plays a fundamental role in diverse fields and helps explain the structure and physical properties of interfaces, at the atomic scale, for example in catalysis, crystal growth, lubrication, electrochemistry, colloidal system, and in many biological reactions. Unraveling the atomic structure at the solid/liquid interface is, therefore, one of the major challenges facing the surface science today to understand the physical processes in the phenomena such as surface coating, self-cleaning, and oil recovery applications. In this thesis, a variety of theory/computational methods in statistical physics and statistical mechanics are used to improve understanding of water adhesion …