Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Cold Atmospheric Pressure Air Plasma Jet For Medical Applications, Juergen Friedrich Kolb, A.-A H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, Michael W. Stacey Jan 2008

Cold Atmospheric Pressure Air Plasma Jet For Medical Applications, Juergen Friedrich Kolb, A.-A H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, Michael W. Stacey

Bioelectrics Publications

By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2 cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.


Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi Jan 2008

Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

In this paper, a 105 GHz millimeter wave interferometer system is used to measure the electron density and temperature of an atmospheric pressure helium plasma driven by submicrosecond pulses. The peak electron density and electron-neutral collision frequency reach 8 X 1012 cm-3 and 2.1 X 1012 s-1, respectively. According to the electron-helium collision cross section and the measured electron-neutral collision frequency, the electron temperature of the plasma is estimated to reach a peak value of about 8.7 eV.


Sublethal And Killing Effects Of Atmospheric-Pressure, Nonthermal Plasma On Eukaryotic Microalgae In Aqueous Media, Ying Zhong Tang, Xin Pei Lu, Mounir Laroussi, Fred C. Dobbs Jan 2008

Sublethal And Killing Effects Of Atmospheric-Pressure, Nonthermal Plasma On Eukaryotic Microalgae In Aqueous Media, Ying Zhong Tang, Xin Pei Lu, Mounir Laroussi, Fred C. Dobbs

OES Faculty Publications

In-depth studies on the interaction of nonthermal plasmas with microorganisms usually focus on bacteria; only little attention has been given to their effects on more complex eukaryotic cells. We report here nonthermal plasma's effects on cell motility, viability staining, and morphology of eukaryotic microalgae, with three marine dinoflagellates and a marine diatom as major targets. The effects on motility and viability staining depended on the time of exposure to plasma and the species of microalgae. We observed a strong pH decrease in aqueous samples (marine and freshwater algal cultures, their culture media, and deionized water) after exposure to plasma, and …


Plasma Medicine, Mounir Laroussi, Alexander Fridman Jan 2008

Plasma Medicine, Mounir Laroussi, Alexander Fridman

Electrical & Computer Engineering Faculty Publications

Recent demonstrations of plasma technology in the treatment of living cells, tissues, and organs are creating a newfield at the intersection of plasma science and technology with biology and medicine - Plasma Medicine.