Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

PDF

2014

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 48

Full-Text Articles in Physics

Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake Dec 2014

Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake

Doctoral Dissertations and Master's Theses

The Langmuir probe technique is the predominant in-situ plasma diagnostic technique, and is arguably the only measurement technique that is universally own on every sounding rocket investigation. Earth's mesosphere region (80-120 km) is a host of many dynamic phenomena such as the noctilucent clouds, breaking gravity waves, inversion layers, settlement of mesospheric smoke particles, etc. As such it is critical to have a comprehensive suite of plasma diagnostics that can unambiguously measure various plasma parameters.

This thesis deals with the development and testing of three different Langmuir probe implementations suitable for investigation of the mesosphere which are to be launched …


Measurement Of The Parity Violating Asymmetry In Elastic Electron Scattering Off 208pb, Jonathan W. Wexler Nov 2014

Measurement Of The Parity Violating Asymmetry In Elastic Electron Scattering Off 208pb, Jonathan W. Wexler

Doctoral Dissertations

The Lead Radius Experiment (PREX) was carried out in order to provide a model independent measurement of the RMS radius √ < r2 >of the neutron distribution in the 208Pb nucleus. The parity-violating scattering asymmetry for longitudinally polarized 1.06 GeV electrons from an unpolarized 208Pb target was measured at Q2 = 0.00880 GeV2. This measurement was performed by the PREX collaboration in Hall A at Jefferson Laboratory in Newport News, VA, between March and June, 2010. The electron detectors used in this measurement were designed and fabricated by University of Massachusetts-Amherst and Smith College. The resulting …


Nonlinear Dichroism In Back-To-Back Double Ionization Of He By An Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse, Jean Marcel Ngoko Djiokap, N. L. Manakov, A. V. Meremianin, S. X. Hu, L. B. Madsen, Anthony F. Starace Nov 2014

Nonlinear Dichroism In Back-To-Back Double Ionization Of He By An Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse, Jean Marcel Ngoko Djiokap, N. L. Manakov, A. V. Meremianin, S. X. Hu, L. B. Madsen, Anthony F. Starace

Anthony F. Starace Publications

Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝ I3/2) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of …


Particle Swarms In Confining Geometries, Eric Robert Boomsma Oct 2014

Particle Swarms In Confining Geometries, Eric Robert Boomsma

Open Access Dissertations

The transport of micro- and nano-particles in subsurface fluid deposits is an area of increasing interest due to the rising use of these particles for consumer and industrial purposes. Subsurface particle transport is complicated by the presence of fractures and fracture networks which govern the paths that particles will be able to take. In this thesis, subsurface particle transport will be investigated using particle swarms; collections of hydro-dynamically interacting particles which exhibit group behavior. The effects of fluid viscosity, particle properties, fracture geometry, and fracture aperture on swarm behavior were experimentally investigated. ^ Swarm parameters were examined in time with …


Dropwise Condensation Dynamics In Humid Air, Julian Eduardo Castillo Chaco Oct 2014

Dropwise Condensation Dynamics In Humid Air, Julian Eduardo Castillo Chaco

Open Access Theses

Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic …


Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta Oct 2014

Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta

Open Access Dissertations

Along with the revolutionary discovery and development of carbon nanostructures, such as carbon nanotubes and graphitic sheets, has arrived the potential for their application in the fields of medicine, bioscience and engineering due to their exceptional structural, thermal and electrical properties. As roll-to-roll plasma deposition systems begin to provide means for large scale production of these nanodevices, a detailed understanding of the environment responsible for their synthesis is imperative in order to more accurately design and control the growth of carbon nanodevices. To date, the understanding of the chemistry and kinetics that govern the synthesis of carbon nanodevices is only …


Positional Control Of Plasmonic Fields And Electron Emission, Robert Campbell Word, Joseph P. Fitzgerald, Rolf Könenkamp Sep 2014

Positional Control Of Plasmonic Fields And Electron Emission, Robert Campbell Word, Joseph P. Fitzgerald, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.


Quantitative Assessment Of Blood Coagulation By Cold Atmospheric Plasma, Caitlin Heslin, Daniela Boehm, Vladimir Milosavljevic, Michelle Laycock, Patrick Cullen, Paula Bourke Sep 2014

Quantitative Assessment Of Blood Coagulation By Cold Atmospheric Plasma, Caitlin Heslin, Daniela Boehm, Vladimir Milosavljevic, Michelle Laycock, Patrick Cullen, Paula Bourke

Articles

Cold atmospheric plasma (CAP) is produced by ionizing a chosen gas, thereby creating charged and reactive species. The reactive species generated are capable of inducing a range of biomedically relevant interactions including blood coagulation. However, the underlying biochemical processes of plasma-assisted blood coagulation are largely unknown, and data quantifying blood clot formation or the impact of system parameters on the intensity of the blood clot are scarce. In this study, blood coagulation was quantified by measuring hemoglobin absorbance. System parameters of the kINPen plasma jet were investigated and compared, including treatment time, distance from the plasma source and gas flow …


Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein Aug 2014

Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy [LIBS] is a commonly used technique for multi-element analyses for various applications such as space exploration, nuclear forensics, environmental analysis, process monitoring. The advantages of the LIBS technique include robustness, ease of use, field portability, and real-time, non-invasive multi-element analyses. However, in comparison to other lab based analytical techniques, it suffers from low precision and low sensitivity. In order to overcome these drawbacks, various approaches have been used, including double-pulse LIBS [DPLIBS]. Typically, various wavelength combinations of two Nd: yttrium aluminum garnet [YAG] lasers have been used for DPLIBS. However, the use of long wavelength (CO2 …


Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D. Aug 2014

Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy (LIBS) is a portable, remote, non-invasive analytical technique which effectively distinguishes neutral and ionic species for a range of low- to high-Z elements in a multi-element target. Subsequently, LIBS holds potential in special nuclear material (SNM) sensing and nuclear forensics requiring minimal sample preparation and detecting isotopic shifts which allows for differentiation in SNM (namely U) enrichment levels. Feasible applications include not only nonproliferation and homeland security but also nuclear fuel prospecting and industrial safeguard endorsement. Elements of higher mass with complex atomic structures, such as U, however, result in crowded emission spectra with LIBS, and characteristic …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette Aug 2014

Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette

Graduate Theses and Dissertations

Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With …


The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster Jul 2014

The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster

MapCores Faculty Publications

Undergraduate students often have minimal exposure to many subfields
of physics which are active areas of research. Space physics
is an area that is particularly difficult to expose students to since
it builds off of another area that most undergraduates see little of,
plasma physics. The magnetopause is convenient entry point
into space physics, since it can be modeled as a pressure balance, which is
a concept familiar from introductory physics. We use the Earth's
magnetopause as the basis for a lab for junior physics majors. In
the lab students analyze results from a NASA MHD simulation and
data from …


Below Gap Optical Absorption In Gaas Driven By Intense, Single-Cycle Coherent Transition Radiation, J. Goodfellow, Matthias Fuchs, D. Daranciang, S. Ghimire, F. Chen, H. Loos, D. A. Reis, A. S. Fisher, A. M. Lindenberg Jul 2014

Below Gap Optical Absorption In Gaas Driven By Intense, Single-Cycle Coherent Transition Radiation, J. Goodfellow, Matthias Fuchs, D. Daranciang, S. Ghimire, F. Chen, H. Loos, D. A. Reis, A. S. Fisher, A. M. Lindenberg

Matthias Fuchs Publications

Single-cycle terahertz fields generated by coherent transition radiation from a relativistic electron beam are used to study the high field optical response of single crystal GaAs. Large amplitude changes in the sub-band-gap optical absorption are induced and probed dynamically by measuring the absorption of a broad-band optical beam generated by transition radiation from the same electron bunch, providing an absolutely synchronized pump and probe geometry. This modification of the optical properties is consistent with strong-field-induced electroabsorption. These processes are pertinent to a wide range of nonlinear terahertz-driven lightmatter interactions anticipated at accelerator-based sources.


Study Of A Generalized Empirical Model For Predicting Pressure Drop For Internal Flows, Tejas Anup Pant Jul 2014

Study Of A Generalized Empirical Model For Predicting Pressure Drop For Internal Flows, Tejas Anup Pant

Open Access Theses

A generalized empirical model for estimating the pressure drop across a channel for a given massflow rate is studied through computational fluid dynamics (CFD) simulations. It is observed that for developing laminar and turbulent flow through channels and pipes of arbitrary cross-section, the variation in the pressure drop between any two points in the flow direction with massflow rate can be well approximated by a second degree expression in massflow rate which is referred to as the empirical model in this study. In the first part of this study, a correlation between the pressure gradient and the massflow rate is …


Jet Measurements With Proton-Proton Collisions At 7 Tev In Alice, Kevin Thompson Jun 2014

Jet Measurements With Proton-Proton Collisions At 7 Tev In Alice, Kevin Thompson

Physics

The CERN Large Hadron Collider (LHC) is the world's largest and most complex particle accelerator, with several experiments making discoveries at the frontiers of particle and nuclear physics. The ALICE experiment at the LHC explores the nature of the early Universe through relativistic nuclear collisions. The properties of the "quark-gluon" plasma of subatomic particles created can be investigated with particle jets, which are produced in the earliest moments of the collision. This paper will provide an overview of the analysis of particle jets in 7 TeV proton-proton collisions, which forms the baseline for understanding jet production in collisions of heavy …


Accordion Effect In Plasma Channels: Generation Of Tunable Comb-Like Electron Beams, Serge Y. Kalmykov, Bradley A. Shadwick, Isaac A. Ghebregziabher, Xavier Davoine, Remi Lehe, Agustin F. Lifschitz, Victor Malka May 2014

Accordion Effect In Plasma Channels: Generation Of Tunable Comb-Like Electron Beams, Serge Y. Kalmykov, Bradley A. Shadwick, Isaac A. Ghebregziabher, Xavier Davoine, Remi Lehe, Agustin F. Lifschitz, Victor Malka

Serge Youri Kalmykov

Propagating a short, relativistically intense laser pulse in a plasma channel makes it possible to generate comb-like electron beams for advanced radiation sources. The ponderomotive force of the leading edge of the pulse expels all electrons facing the pulse. The bare ions attract the ambient plasma electrons, forming a closed bubble of electron density confining the pulse tail. The cavity of electron density evolves slowly, in lock-step with the optical driver, and readily traps background electrons. The combination of a bubble (a self-consistently maintained, “soft” hollow channel) and a preformed channel forces transverse flapping of the laser pulse tail, causing …


X-Ray Second Harmonic Generation, S. Shwartz, Matthias Fuchs, J. B. Hastings, Y. Inubushi, T. Ishikawa, T. Katayama, D. A. Reis, T. Sato, K. Tono, M. Yabashi, S. Yudovich, S. E. Harris Apr 2014

X-Ray Second Harmonic Generation, S. Shwartz, Matthias Fuchs, J. B. Hastings, Y. Inubushi, T. Ishikawa, T. Katayama, D. A. Reis, T. Sato, K. Tono, M. Yabashi, S. Yudovich, S. E. Harris

Matthias Fuchs Publications

We report clear experimental evidence for second harmonic generation at hard x-ray wavelengths. Using a 1.7 Å pumping beam generated by a free electron laser, we observe second harmonic generation in diamond. The generated second harmonic is of order 10 times the background radiation, scales quadratically with pump pulse energy, and is generated over a narrow phase-matching condition. Of importance for future experiments, our results indicate that it is possible to observe nonlinear x-ray processes in crystals at pump intensities exceeding 1016 W/cm2.


Studies Of Charge Collection In Diamond-Based Particle Detectors At The Lhc, Jared Smith Apr 2014

Studies Of Charge Collection In Diamond-Based Particle Detectors At The Lhc, Jared Smith

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

See file


Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts Apr 2014

Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts

Open Access Theses

The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers …


Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark Apr 2014

Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark

Open Access Theses

A rod bundle drift-flux correlation is developed with intended application across a wide range of two-phase flow conditions. Special consideration is made for fluid flow mechanisms at low liquid velocity and low pressure conditions. In these instances, gravitational forces from the density difference of the associated fluid phases are more significant. Secondary flow patterns may develop as a result and a drift-flux correlation would need to make appropriate adjustments. Earlier correlations may have increased error at these conditions if they have been formulated with respect to relatively higher pressures or flow rates. In the present work, area-average void fraction data …


In-Package Atmospheric Pressure Cold Plasma Treatment Of Cherry Tomatoes, N. Misra, Kevin Keener, Paula Bourke, J Mosnier, Patrick Cullen Mar 2014

In-Package Atmospheric Pressure Cold Plasma Treatment Of Cherry Tomatoes, N. Misra, Kevin Keener, Paula Bourke, J Mosnier, Patrick Cullen

Articles

Cold plasma is increasingly under research for decontamination of foods, especially fresh fruits and vegetables. The effect of cold plasma on food quality, however, remains under researched. This study investigates the effects of cold plasma generated within a sealed package from a dielectric barrier discharge on the physical quality parameters and respiration rates of cherry tomatoes. Respiration rates and weight loss were monitored continuously, while other parameters are reported at the end of storage period. Differences among weight loss, pH and firmness for control and treated cherry tomatoes were insignificant towards the end of storage life. Changes in respiration rates …


Utilizing Near-Ir Tunable Laser Absorption Spectroscopy To Study Detonation And Combustion Systems, Christopher J. Mcgahan Mar 2014

Utilizing Near-Ir Tunable Laser Absorption Spectroscopy To Study Detonation And Combustion Systems, Christopher J. Mcgahan

Theses and Dissertations

A Hencken burner, RDE, and a detonation tube were studied using a TDM-TDLAS system to measure water absorption features over two spectral regions (7,435 to 7,442 cm-1 and 7,465 to 7,471 cm-1) near 1.3 micrometers. These absorption features were t with simulated spectra using data from the HITEMP database to obtain temperatures and water concentrations for the three systems. Velocity was calculated for the RDE system using the Doppler shift of the spectral lines. To perform the calculations necessary to obtain these results (temperature, concentration, and velocity) a GUI was developed with supporting code. A Hencken burner flame was studied …


In-Package Atmospheric Pressure Cold Plasma Treatment Of Strawberries, N. Misra, Paula Bourke, Patrick Cullen, Sonal Patil Mar 2014

In-Package Atmospheric Pressure Cold Plasma Treatment Of Strawberries, N. Misra, Paula Bourke, Patrick Cullen, Sonal Patil

Articles

The ability to generate low temperature plasma at atmospheric pressure offers new opportunities to decontaminate biological materials, including fresh foods. In this study, strawberries were treated with atmospheric cold plasma (ACP), generated with a 60 kV dielectric barrier discharge (DBD) pulsed at 50 Hz, across a 40 mm electrode gap, generated inside a sealed package containing ambient air (42% relative humidity). The current-voltage characteristics revealed that the plasma operated in the filamentary regime. The background microflora (aerobic mesophillic bacteria, yeast and mould) of strawberries treated for 5 min was reduced by 2 log 10 within 24 h of post-ACP treatment. …


Physical Processes At Work In Sub-30fs, Pw Laser Pulse-Driven Plasma Accelerators: Towards Gev Electron Acceleration Experiments At Cilex Facility., Arnaud Beck, Serge Y. Kalmykov, Xavier Davoine, Agustin F. Lifschitz, Bradley A. Shadwick, Victor Malka, Arnd E. Specka Feb 2014

Physical Processes At Work In Sub-30fs, Pw Laser Pulse-Driven Plasma Accelerators: Towards Gev Electron Acceleration Experiments At Cilex Facility., Arnaud Beck, Serge Y. Kalmykov, Xavier Davoine, Agustin F. Lifschitz, Bradley A. Shadwick, Victor Malka, Arnd E. Specka

Serge Youri Kalmykov

Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion)prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10%of incident pulse energy transferred to …


All-Optical Control Of Electron Self-Injection In Millimeter-Scale, Tapered Dense Plasmas., Serge Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick Feb 2014

All-Optical Control Of Electron Self-Injection In Millimeter-Scale, Tapered Dense Plasmas., Serge Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick

Serge Youri Kalmykov

It is demonstrated that a laser pulse with an ultrahigh bandwidth (400 nm) is an asset for future high-repetition-rate , quasimonoenergetic (QME), GeV-scale laser plasma electron accelerators. Manipulating the phase of the driver has a direct impact on evolution of the accelerating bucket (a cavity of electron density maintained by the pressure of the laser pulse radiation), making it possible to control electron self-injection and the final parameters of the QME beam by purely optical means. The large bandwidth makes it possible to compensate for the frequency red-shift accumulated at the pulse leading edge in transit through the plasma. Advancing …


In-Package Nonthermal Plasma Degradation Of Pesticides On Fresh Produce, N. Misra, Shashi Pankaj, Tony Walsh, Finbarr O'Regan, Paula Bourke, Patrick Cullen Feb 2014

In-Package Nonthermal Plasma Degradation Of Pesticides On Fresh Produce, N. Misra, Shashi Pankaj, Tony Walsh, Finbarr O'Regan, Paula Bourke, Patrick Cullen

Articles

In-package nonthermal plasma (NTP) technology is a novel technology for the decontamination of foods and biological materials. This study presents the first report on the potential of the technology for the degradation of pesticide residues. A cocktail of pesticides, namely Azoxystrobin, Cyprodinil, Fludioxonil and Pyriproxyfen was tested on strawberries. The concentrations of these pesticides were monitored in priori and post- plasma treatment using GC-MS/MS. An applied voltage and time dependent degradation of the pesticides was observed for treatment voltages of 60, 70 and 80 kV and treatment durations ranging from 1 to 5 min, followed by 24 h in-pack storage. …


Resonant Electron-Atom Bremsstrahlung In An Intense Laser Field, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace Feb 2014

Resonant Electron-Atom Bremsstrahlung In An Intense Laser Field, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace

Anthony F. Starace Publications

We analyze a resonant mechanism for spontaneous laser-assisted electron bremsstrahlung (BrS) involving the resonant transition (via either laser-assisted electron-ion recombination or electron-atom attachment) into a laser-dressed intermediate quasibound state (corresponding, respectively, to either a field-free neutral atom or a negative-ion bound state) accompanied by ionization or detachment of this state by the laser field. This mechanism leads to resonant enhancement (by orders of magnitude) of the BrS spectral density for emitted photon energies corresponding to those for laser-assisted recombination or attachment. We present an accurate parametrization of the resonant BrS amplitude in terms of the amplitudes for nonresonant BrS, for …


Interaction Of Particle Beams With One-Dimensional Potential Barriers, Sheehan Ahmed Fcrh '11, Ryan Brennan Fcrh '11, Vassilios Fessatidis, Antonios Balassis Jan 2014

Interaction Of Particle Beams With One-Dimensional Potential Barriers, Sheehan Ahmed Fcrh '11, Ryan Brennan Fcrh '11, Vassilios Fessatidis, Antonios Balassis

The Fordham Undergraduate Research Journal

The objective of this project was to model particle beams in a number of 1-D potential systems and to create generalized Mathematica programs that can later be added on to continue further research into more complicated systems involving electric fields across nanowires. The project was mainly used to investigate how the transmission coefficients (i.e., percentage transmission) of these beams dynamically varied with changing parameters and to visualize in real time how exactly resonance peaks and band structures arose and changed as certain parameters (such as number and height of barriers) changed values.


Characterizing The Tgt-Lightning Relationship Using Entln, Kareem Omar Jan 2014

Characterizing The Tgt-Lightning Relationship Using Entln, Kareem Omar

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.