Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

External Link

Selected Works

Articles 1 - 17 of 17

Full-Text Articles in Physics

Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song Apr 2016

Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song

Partha Banerjee

We analyze the steady-state (Gaussian) beam fanning in LiNbO3 from the nonlinearly coupled Kukhtarev equations by including both diffusive and photovoltaic effects and by adding the thermal effect in the calculation. There is good agreement between theory and experiment. The results show a symmetric beam-fanning pattern whose size depends on the beam waist and the power. Possible applications of our results in nondestructive testing of material parameters and optical limiting are discussed.


Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee Apr 2016

Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee

Partha Banerjee

We present an extension of our previous nonlinear beam-simulation method to the propagation and interaction of pulse envelopes. The extra time dimension is applied in the context of a dispersive nonlinear medium that is described by a Klein–Gordon equation with an added cubically nonlinear, self-focusing term. Pulse propagation in this medium is modeled as the evolution of a spatiotemporal spectrum—i.e., the frequency-dependent angular spectrum of the pulse envelope—traversing a sequence of self-induced, thin, weak phase filters. Preliminary simulation experiments show agreement with known behavior in the absence of nonlinearity, confirm the existence of an (apparently unstable) stationary solution, and demonstrate …


Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui Apr 2016

Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui

Partha Banerjee

Propagation of an externally focused or defocused Gaussian beam in a cubically nonlinear material is studied analytically and experimentally. The theoretical analysis is applied to determine the sign and magnitude of n2 for a material by means of a single-beam experiment with a finite nonlinear sample within which propagational diffraction cannot be neglected. Experimental results for a solution of chlorophyll in ethanol are reported. Based on available theory, an average n2 can be defined for a nonlinearity of thermal origin, and this value is found to be in good agreement with experimental results. Finally, the theoretical analysis and …


On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon Apr 2016

On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon

Partha Banerjee

The Fresnel diffraction formula is straightforwardly obtained by solving a partial differential equation (PDE) for envelope propagation using Fourier transform techniques. The PDE, in turn, can be derived from the dispersion relation of a linear medium by employing a simple operator formalism. The transfer function and impulse response of propagation follows as a spin‐off and is used to solve illustrative problems. Huygens’ principle is visualized as a consequence of the convolution property of linear systems.


Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon Apr 2016

Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon

Partha Banerjee

The role of acousto-optic (AO) modulators in programmable real-time image processing has recently been demonstrated. For fully investigating the image-processing capabilities of the AO modulator, general techniques to derive spatial transfer functions are needed for a variety of physical situations. We develop a technique to determine the spatial transfer functions numerically for various cases of beam incidence on an AO modulator. Normal incidence and incidence at twice the Bragg angle are investigated as examples for which double-sided and single-sided notch spatial filtering, respectively, are achieved. The observed spatial-filtering characteristics are reconciled with simple intuitive physical arguments.


Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee Apr 2016

Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee

Partha Banerjee

We study a three-dimensional model of interaction of fundamental-frequency and second-harmonic beams in a quadratically nonlinear medium. Numerical simulations of the three-dimensional propagation problem in the presence of diffraction and anisotropy are performed under the paraxial approximation. The role of the transverse effects in various regimes is investigated. We demonstrate the effect of phase modulation and an induced nonlinear focusing during the interaction of the fundamental frequency with the generated second harmonic.


Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki Apr 2016

Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki

Partha Banerjee

The characteristics of a new high-gain photorefractive polymer composite with a PNP chromophore are investigated. Competition between beam fanning and two-wave coupling (TWC) is predicted and verified experimentally. The intensity dependence of TWC gain is studied. Higher diffraction order and forward phase conjugation in a TWC geometry are observed and explained.


Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah Apr 2016

Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah

Partha Banerjee

We analyze linear propagation in negative index materials by starting from a dispersion relation and by deriving the underlying partial differential equation. Transfer functions for propagation are derived in temporal and spatial frequency domains for unidirectional baseband and modulated pulse propagation, as well as for beam propagation. Gaussian beam propagation is analyzed and reconciled with the ray transfer matrix approach as applied to propagation in negative index materials. Nonlinear extensions of the linear partial differential equation are made by incorporating quadratic and cubic terms, and baseband and envelope solitary wave solutions are determined. The conditions for envelope solitary wave solutions …


Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee Apr 2016

Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee

Partha Banerjee

Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.


Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans Apr 2016

Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans

Partha Banerjee

Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is …


3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj Apr 2016

3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj

Partha Banerjee

We outline the use of digital holographic tomography to determine the three-dimensional (3D) shapes of falling and static objects, such as lenslets and water droplets. Reconstruction of digitally recorded inline holograms is performed using multiplicative and Radon transform techniques to reveal the exact 3D shapes of the objects.


Coupling Efficiencies For General Target Illumination Ladar Systems Incorporating Single Mode Optical Fiber Receivers, Christopher Brewer, Bradley Duncan, Kenneth Barnard, Edward Watson Nov 2015

Coupling Efficiencies For General Target Illumination Ladar Systems Incorporating Single Mode Optical Fiber Receivers, Christopher Brewer, Bradley Duncan, Kenneth Barnard, Edward Watson

Bradley D. Duncan

A rigorous method for modeling received power coupling efficiency (ηF/R) and transmitted power coupling efficiency (ηF/T) in a general-target-illumination ladar system is presented. For our analysis we concentrate on incorporating a single-mode optical fiber into the ladar return signal path. By developing expressions for both ηF/R and ηF/T for a simple, diffuse target, our model allows for varying range, beam size on target, target diameter, and coupling optics. Through numerical analysis ηF/R is shown to increase as the range to target increases and decrease as target diameter increases, and ηF/T is shown to decrease with target range. A baseline signal-to-noise …


Space-Bandwidth Product Enhancement Of A Monostatic, Multi-Aperture Infrared Image Upconversion Ladar Receiver Incorporating Periodically Polled Linbo3, Christopher Brewer, Bradley Duncan, Phillip Maciejewski, Sean Kirkpatrick, Edward Watson Nov 2015

Space-Bandwidth Product Enhancement Of A Monostatic, Multi-Aperture Infrared Image Upconversion Ladar Receiver Incorporating Periodically Polled Linbo3, Christopher Brewer, Bradley Duncan, Phillip Maciejewski, Sean Kirkpatrick, Edward Watson

Bradley D. Duncan

We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system’s measured space-bandwidth product is demonstrated.


Fibre-Optic Network Architectures For On-Board Digital Avionics Signal Distribution, Mohammad Alam, Mohammed Atiquzzaman, Bradley Duncan, Hung Nguyen, Richard Kunath Nov 2015

Fibre-Optic Network Architectures For On-Board Digital Avionics Signal Distribution, Mohammad Alam, Mohammed Atiquzzaman, Bradley Duncan, Hung Nguyen, Richard Kunath

Bradley D. Duncan

Continued progress in both civil and military radio-frequency (RF) digital avionics applications is overstressing the capabilities and reliability of existing RF communication networks based on coaxial cables on board modern aircrafts. Future avionics systems will require high-bandwidth on-board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fibre-optic networks can meet all these challenges in a cost-effective manner. Recently, on-board fibre-optic communication systems, where a fibre-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. However, modern digital avionics systems require a system capable of …


Scene-Based Nonuniformity Correction With Video Sequences And Registration, Russell Hardie, Majeed Hayat, Ernest Armstrong, Brian Yasuda May 2015

Scene-Based Nonuniformity Correction With Video Sequences And Registration, Russell Hardie, Majeed Hayat, Ernest Armstrong, Brian Yasuda

Russell C. Hardie

We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance ~or true scene value!. These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and …


Improved Optimization Of Soft Partition Weighted Sum Filters And Their Application To Image Restoration, Yong Lin, Russell Hardie, Qin Sheng, Kenneth Barner May 2015

Improved Optimization Of Soft Partition Weighted Sum Filters And Their Application To Image Restoration, Yong Lin, Russell Hardie, Qin Sheng, Kenneth Barner

Russell C. Hardie

Soft-partition-weighted-sum (Soft-PWS) filters are a class of spatially adaptive moving-window filters for signal and image restoration. Their performance is shown to be promising. However, optimization of the Soft-PWS filters has received only limited attention. Earlier work focused on a stochastic-gradient method that is computationally prohibitive in many applications. We describe a novel radial basis function interpretation of the Soft-PWS filters and present an efficient optimization procedure. We apply the filters to the problem of noise reduction. The experimental results show that the Soft-PWS filter outperforms the standard partition-weighted-sum filter and the Wiener filter.


Computationally Efficient Video Restoration For Nyquist Sampled Imaging Sensors Combining An Affine-Motion-Based Temporal Kalman Filter And Adaptive Wiener Filter, Michael Rucci, Russell Hardie, Kenneth Barnard May 2015

Computationally Efficient Video Restoration For Nyquist Sampled Imaging Sensors Combining An Affine-Motion-Based Temporal Kalman Filter And Adaptive Wiener Filter, Michael Rucci, Russell Hardie, Kenneth Barnard

Russell C. Hardie

In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where …