Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Modeling Of Sbs Phase Conjugation In Multimode Step Index Fibers, Justin B. Spring Mar 2008

Modeling Of Sbs Phase Conjugation In Multimode Step Index Fibers, Justin B. Spring

Theses and Dissertations

Stimulated Brillouin scattering in a multimode step-index fiber can be used to generate a counter-propagating, phase-conjugate beam that would prove useful in many applications, such as near diffraction limited, double-pass high-power amplifiers or coherent beam combination. Relatively little modeling of such a fiber-based phase conjugator has been done, making design decisions regarding type and length of fiber largely guesswork. A numerical model was constructed with the aim of providing educated predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical perturbation algorithm was constructed to search for …


Optical Solitons In Periodic Structures, Konstantinos Makris Jan 2008

Optical Solitons In Periodic Structures, Konstantinos Makris

Electronic Theses and Dissertations

By nature discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one-and two-dimensional nonlinear waveguide arrays. In recent years such lattice structures have been implemented or induced in a variety of material systems including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness leads to new families of optical solitons that have no counterpart whatsoever in continuous systems. In the first part of this dissertation, a …