Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Compact Holographic Optical Element-Based Electronic Speckle Pattern Interferometer For Rotation And Vibration Measurements, Viswanath Bavigadda, Mohesh Moothanchery, Manojit Pramanik, Emilia Mihaylova, Vincent Toal Jan 2017

Compact Holographic Optical Element-Based Electronic Speckle Pattern Interferometer For Rotation And Vibration Measurements, Viswanath Bavigadda, Mohesh Moothanchery, Manojit Pramanik, Emilia Mihaylova, Vincent Toal

Conference Papers

An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed.


Effect Of Monomer Diffusion On Photoinduced Shrinkage In Photopolymer Layers Determined By Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Manojit Pramanik, Vincent Toal, Izabela Naydenova Jan 2017

Effect Of Monomer Diffusion On Photoinduced Shrinkage In Photopolymer Layers Determined By Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Manojit Pramanik, Vincent Toal, Izabela Naydenova

Conference Papers

The aim of this study is to determine the effect of monomer diffusion on the photoinduced shrinkage profile in acrylamide based photopolymer layers during holographic recording. Using phase shifting electronic speckle pattern interferometry the displacement at each pixel in the image of the layer is measured. The complete displacement profile of the layer was obtained using phase shifting technique. We observed a reduction in shrinkage as a result of monomer diffusion from unexposed regions of holographic exposure. As a result of diffusion the maximum shrinkage was reduced by 26 % from 7.18μm to 5.28μm in a photopolymer layer of thickness160 …