Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Electrodynamics Modeling Of Plasmonic-Organic Hybrid Waveguides, Marcus Michel Jan 2020

Electrodynamics Modeling Of Plasmonic-Organic Hybrid Waveguides, Marcus Michel

Pomona Senior Theses

Optical fibers have multiple advantages over conventional electrical connections, such as lower energy losses and higher bandwidth. To use optics for chip-to-chip communication, electro-optic (EO) modulators need to be scaled down to be incorporated on integrated circuits. This size reduction has been accomplished using plasmonic-organic hybrid (POH) waveguides, which make use of nonlinear organic EO materials and surface plasmon polaritons to achieve light modulation in devices with lengths on the micron scale. As these devices are just starting to be developed, there are many avenues for their potential optimization. In order to streamline and reduce the cost of the optimization …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …