Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

California Polytechnic State University, San Luis Obispo

Quantum Computing

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Investigating The Talbot Effect In Arrays Of Optical Dipole Traps For Neutral Atom Quantum Computing, Sergio Aguayo Apr 2019

Investigating The Talbot Effect In Arrays Of Optical Dipole Traps For Neutral Atom Quantum Computing, Sergio Aguayo

Physics

Quantum computers are devices that are able to perform calculations not achievable for classical computers. Although there are many methods for creating a quantum computer, using neutral atoms offers the advantage of being stable when compared to other methods. The purpose of this investigation is to explore possible optical dipole trap configurations that would be useful for implementing a quantum computer with neutral atoms. Specifically, we computationally investigate arrays of pinholes, the diffraction pattern generated by them, and the onset of the Talbot effect in these traps. We manipulate the radius of the pinholes, the number of pinholes in the …


High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray Dec 2014

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray

Physics

Two circuits were designed, built, and tested for the purpose of aiding in the transfer of 87Rb atoms from a MOT to dipole traps and for characterizing the final dipole traps. The first circuit was a current switch designed to quickly turn the magnetic fields of the MOT off. The magnetic coil switch was able to reduce the magnetic field intensity to 5 % of its initial value after 81 μs. The second circuit was an analog signal switch designed to turn the modulation signal of an AOM off. The analog switch was able to reduce the modulation signal intensity …


Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand Jun 2011

Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand

Physics

Neutral atom quantum computing is a promising avenue toward the realization of a physical quantum computer. The diffraction pattern formed by laser light immediately behind a circular aperture can be used as optical atomic dipole traps, and has the potential to be scaled up to create a two dimensional array of individually addressable qubit sites. In working towards experimental demonstration of the dipole traps, we are constructing a MOT. The function of the MOT is to cool and trap 87Rb in a localized cloud in our vacuum chamber, which will be used to load the dipole traps. One critical …