Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood Nov 2019

Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood

LSU Doctoral Dissertations

The fusion of neutron-rich nuclei is of interest to nuclear astrophysics and nuclear structure. X-ray superbursts are powered by runaway thermonuclear burning deep inside of a neutron star, where heating from the pycnonuclear fusion of neutron-rich isotopes is an important heat source. Experimental measurements of fusion cross sections of neutron-rich isotopes have provided insights regarding nucleon transfer and nuclear structure properties affecting fusion. Recently, the 15C + 12C total fusion cross section was measured using a 15C beam produced by the in-flight beam production facility, which is part of the Argonne Tandem LINAC Accelerator System (ATLAS) at …


Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss Nov 2019

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss

LSU Doctoral Dissertations

Clustering in nuclear systems has broad impacts on all phases of stellar burning, and plays a significant role in our understanding of nucleosynthesis, or how and where nuclei are produced in the universe. The role of alpha particles in particular is extremely important for nuclear astrophysics: 4He was one of the earliest elements produced in the Big Bang, it is one of the most abundant elements in the universe, and helium burning -- in particular, the triple-alpha process -- is one of the most important ``engines'' in stars. To better understand nucleosynthesis and stellar burning, then, it is important …


Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker Jul 2019

Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker

LSU Doctoral Dissertations

Recent developments in ab initio nuclear structure have provided us with a variety of many-body methods capable of describing nuclei into the medium-mass region of the chart of nuclides. One of these, the symmetry-adapted no-core shell model (SA-NCSM), capitalizes on inherent symmetries of the nucleus and is uniquely suited to examine the underlying physics of dynamical quantities, such as the response function.

We examine the applicability of the SA-NCSM to calculations of these quantities and assess the quality of its inputs by calculating electromagnetic sum rules and response functions with the Lanczos sum rule method and Lanczos response function method, …