Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee Dec 2017

Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee

Nicholas Whiting

Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for 29Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their 29Si MR signals; the particles demonstrated long 29Si spin-lattice relaxation (T1) times (~25 mins), which suggests potential applicability for medical imaging. Furthermore, 29Si hyperpolarization levels were sufficient to allow 29Si MRI in phantoms. These results underscore the potential of porous …


Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D. Aug 2016

Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D.

John Copeland Nagle

We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/ DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added …


Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya Aug 2016

Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya

Nicholas Whiting

Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas <1  min for other species at room temperature), allowing a wide range of potential …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya Jan 2015

Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya

Nicholas Whiting

Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The …


Hyperpolarization Methods For Mrs, Boyd M. Goodson, Nicholas Whiting, Aaron M. Coffey, Panayiotis Nikolaou, Fan Shi, Brogan M. Gust, Maxwell E. Gemeinhardt, Roman Shchepin, Jason G. Skinner, Jonathan R. Birchall, Michael J. Barlow, Eduard Y. Chekmenev Dec 2014

Hyperpolarization Methods For Mrs, Boyd M. Goodson, Nicholas Whiting, Aaron M. Coffey, Panayiotis Nikolaou, Fan Shi, Brogan M. Gust, Maxwell E. Gemeinhardt, Roman Shchepin, Jason G. Skinner, Jonathan R. Birchall, Michael J. Barlow, Eduard Y. Chekmenev

Nicholas Whiting

This article covers the fundamental principles and practice of NMR hyperpolarization techniques, which are proving useful for in vivo magnetic resonance spectroscopy (MRS) studies of metabolism in animal models, and clinical trials with hyper-enhanced sensitivity. Fundamentally, hyperpolarization methods enhance nuclear spin polarization by orders-of-magnitude, resulting in concomitant improvement in NMR detection sensitivity. The hyperpolarization methods described here – dynamic nuclear polarization (DNP), para-hydrogen induced polarization (PHIP), signal amplification by reversible exchange (SABRE), and spin-exchange optical pumping (SEOP) – are capable of achieving nuclear spin polarization approaching the theoretical maximum of unity on nuclear spin sites of molecular or atomic agents …


Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson Dec 2013

Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson

Nicholas Whiting

Here we provide a full report on the construction, components, and capabilities of our consortium’s “opensource”
large-scale (~1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. …


Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore Jun 2012

Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore

Yevgeniya V. Zastavker

A newly developed method of radiation dosimetry makes use of the optical properties of polymer gels. The dose-response mechanism relies on the production of light-scattering polymer micro-particles in the gel at each site of radiation absorption. The scattering produces an attenuation of transmitted light intensity that is directly related to the dose and independent of dose rate. For the BANG polymer gel (bis, acrylamide, nitrogen, and gelatin) the shape of the dose-response curve depends on the fraction of the cross-linking monomer in the initial mixture and on the wavelength of light. At 500 nm the attenuation coefficient (μ) increases by …


Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D. Dec 2008

Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D.

Prof. Stephanie Tristram-Nagle Ph.D.

We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/ DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added …


Solving Ill-Posed Problems With Artificial Neural Networks, Arun D. Kulkarni Dec 1990

Solving Ill-Posed Problems With Artificial Neural Networks, Arun D. Kulkarni

Arun Kulkarni

With many physical problems, measurement of spectral distribution, cosmic radiation, aerial and satellite imaging indirect sensing/recording devices are used. In many of these cases, the recording systems can be modeled by a Fredholm integral equation of the first kind. An inversion of the kernel representing a system, in the presence of noise, is an ill-posed problem. The direct inversion often yields an unacceptable solution. In this paper, we suggest an artificial neural network (ANN) architecture to solve certain kinds of ill-posed problems. The weights in the model are initialized using eigen-vectors and eigen-values of the kernel matrix that characterize the …