Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

When To Hold And When To Fold: Studies On The Topology Of Origami And Linkages, Mary Elizabeth Lee Nov 2023

When To Hold And When To Fold: Studies On The Topology Of Origami And Linkages, Mary Elizabeth Lee

Doctoral Dissertations

Linkages and mechanisms are pervasive in physics and engineering as models for a
variety of structures and systems, from jamming to biomechanics. With the increase
in physical realizations of discrete shape-changing materials, such as metamaterials,
programmable materials, and self-actuating structures, an increased understanding
of mechanisms and how they can be designed is crucial. At a basic level, linkages
or mechanisms can be understood to be rigid bars connected at pivots around which
they can rotate freely. We will have a particular focus on origami-like materials, an
extension to linkages with the added constraint of faces. Self-actuated versions typ-
ically start …


Applications Of Statistical Physics To Ecology: Ising Models And Two-Cycle Coupled Oscillators, Vahini Reddy Nareddy Oct 2022

Applications Of Statistical Physics To Ecology: Ising Models And Two-Cycle Coupled Oscillators, Vahini Reddy Nareddy

Doctoral Dissertations

Many ecological systems exhibit noisy period-2 oscillations and, when they are spatially extended, they undergo phase transition from synchrony to incoherence in the Ising universality class. Period-2 cycles have two possible phases of oscillations and can be represented as two states in the bistable systems. Understanding the dynamics of ecological systems by representing their oscillations as bistable states and developing dynamical models using the tools from statistical physics to predict their future states is the focus of this thesis. As the ecological oscillators with two-cycle behavior undergo phase transitions in the Ising universality class, many features of synchrony and equilibrium …


General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul Jun 2022

General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul

Doctoral Dissertations

In this thesis we develop a formulation of general covariance, an essential property for many field theories on curved spacetimes, using the language of stacks and the Batalin-Vilkovisky formalism. We survey the theory of stacks, both from a global and formal perspective, and consider the key example in our work: the moduli stack of metrics modulo diffeomorphism. This is then coupled to the Batalin-Vilkovisky formalism–a formulation of field theory motivated by developments in derived geometry–to describe the associated equivariant observables of a theory and to recover and generalize results regarding current conservation.


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Filaments, Fibers, And Foliations In Frustrated Soft Materials, Daria Atkinson Dec 2020

Filaments, Fibers, And Foliations In Frustrated Soft Materials, Daria Atkinson

Doctoral Dissertations

Assemblies of one-dimensional filaments appear in a wide range of physical systems: from biopolymer bundles, columnar liquid crystals, and superconductor vortex arrays; to familiar macroscopic materials, like ropes, cables, and textiles. Interactions between the constituent filaments in such systems are most sensitive to the distance of closest approach between the central curves which approximate their configuration, subjecting these distinct assemblies to common geometric constraints. Dual to strong dependence of inter-filament interactions on changes in the distance of closest approach is their relative insensitivity to reptations, translations along the filament backbone. In this dissertation, after briefly reviewing the mechanics and …