Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Applying Hallgren’S Algorithm For Solving Pell’S Equation To Finding The Irrational Slope Of The Launch Of A Billiard Ball, Sangheon Choi Apr 2023

Applying Hallgren’S Algorithm For Solving Pell’S Equation To Finding The Irrational Slope Of The Launch Of A Billiard Ball, Sangheon Choi

Mathematical Sciences Technical Reports (MSTR)

This thesis is an exploration of Quantum Computing applied to Pell’s equation in an attempt to find solutions to the Billiard Ball Problem. Pell’s equation is a Diophantine equation in the form of x2 − ny2 = 1, where n is a given positive nonsquare integer, and integer solutions are sought for x and y. We will be applying Hallgren’s algorithm for finding irrational periods in functions, in the context of billiard balls and their movement on a friction-less unit square billiard table. Our central research question has been the following: Given the cutting sequence of the billiard …


Implementation Of A Least Squares Method To A Navier-Stokes Solver, Jada P. Lytch, Taylor Boatwright, Ja'nya Breeden May 2022

Implementation Of A Least Squares Method To A Navier-Stokes Solver, Jada P. Lytch, Taylor Boatwright, Ja'nya Breeden

Rose-Hulman Undergraduate Mathematics Journal

The Navier-Stokes equations are used to model fluid flow. Examples include fluid structure interactions in the heart, climate and weather modeling, and flow simulations in computer gaming and entertainment. The equations date back to the 1800s, but research and development of numerical approximation algorithms continues to be an active area. To numerically solve the Navier-Stokes equations we implement a least squares finite element algorithm based on work by Roland Glowinski and colleagues. We use the deal.II academic library , the C++ language, and the Linux operating system to implement the solver. We investigate convergence rates and apply the least squares …


Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu Dec 2021

Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu

Mathematical Sciences Technical Reports (MSTR)

Molina and Watrous present a variation of the method to simulate a quantum Turing machine employed in Yao’s 1995 publication “Quantum Circuit Complexity”. We use a computer program to implement their method with linear algebra and an additional unitary operator defined to complete the details. Their method is verified to be correct on a quantum Turing machine.