Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

X-ray diffraction

Selected Works

Articles 1 - 2 of 2

Full-Text Articles in Physics

Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan Mar 2015

Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan

Jason R. Hattrick-Simpers

We discuss techniques for managing and visualizing x-ray diffraction spectrum data for thin film composition spreads which map large fractions of ternary compositional phase diagrams. An in-house x-ray microdiffractometer is used to obtain spectra from over 500 different compositions on an individual spread. The MATLAB software is used to quickly organize the data and create various plots from which one can quickly grasp different information regarding structural and phase changes across the composition spreads. Such exercises are valuable in rapidly assessing the “overall” picture of the structural evolution across phase diagrams before focusing in on specific composition regions for detailed …


Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2006

Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

Thermal effects on domain orientation in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated by using in situ x-ray diffraction with an area detector. In the case of a soft PZT, it is found that the texture parameter called multiples of a random distribution (MRD) initially increases with temperature up to approximately 100 °C and then falls to unity at temperatures approaching the Curie temperature, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. The relationship between the mechanical strain energy and domain wall mobility with temperature is discussed.