Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan Nov 2021

Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan

Physics Faculty Publications

A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Origin Of Magnetism In Γ-Fesi 2 /Si(111) Nanostructures, Liwei D. Geng, Sahil Dhoka, Ilan Goldfarb, Ranjit Pati, Yongmei M. Jin Mar 2021

Origin Of Magnetism In Γ-Fesi 2 /Si(111) Nanostructures, Liwei D. Geng, Sahil Dhoka, Ilan Goldfarb, Ranjit Pati, Yongmei M. Jin

Michigan Tech Publications

Magnetism has recently been observed in nominally nonmagnetic iron disilicide in the form of epitaxial γ-FeSi2 nanostructures on Si(111) substrate. To explore the origin of the magnetism in γ-FeSi2/Si(111) nanostructures, we performed a systematic first-principles study based on density functional theory. Several possible factors, such as epitaxial strain, free surface, interface, and edge, were examined. The calculations show that among these factors, only the edge can lead to the magnetism in γ-FeSi2/Si(111) nanostructures. It is shown that magnetism exhibits a strong dependency on the local atomic structure of the edge. Furthermore, magnetism can be enhanced by creating multiple-step edges. In …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton Feb 2021

Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to monitor photoinduced changes in the charge states of sulfur vacancies and Cu ions in tin hypothiodiphosphate. A Sn2P2S6 crystal containing Cu+ (3d10) ions at Sn2+ sites was grown by the chemical vapor transport method. Doubly ionized sulfur vacancies (V2+S) are also present in the as-grown crystal (where they serve as charge compensators for the Cu+ ions). For temperatures below 70 K, exposure to 532 or 633 nm laser light produces stable Cu2+ (3d9) ions, as electrons move from Cu+ ions to …


Optimisation Of Retrofit Wall Insulation: An Irish Case Study, Rakshit D. Muddu, D M. Gowda, Anthony James Robinson, Aimee Byrne Jan 2021

Optimisation Of Retrofit Wall Insulation: An Irish Case Study, Rakshit D. Muddu, D M. Gowda, Anthony James Robinson, Aimee Byrne

Articles

Ireland has one of the highest rates of emissions per capita in the world and its residential sector is responsible for approximately 10% of total national CO2 emissions. Therefore, reducing the CO2 emissions in this sector will play a decisive role in achieving EU targets of reducing emissions by 40% by 2030. To better inform decisions regarding retrofit of the existing building stock, this study proposes Optimum Insulation Thicknesses (OIT) for typical walls in 25 regions in Ireland. The calculation of OIT includes annual heat energy expenditure, CO2 emissions, and material payback period. The approach taken is based on Heating …


Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla Jan 2021

Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla

Shireen Adenwalla Papers

Domain walls in magnetic thin films are being explored for memory applications and the speed at which they move has acquired increasing importance. Magnetic fields and currents have been shown to drive domain walls with speeds exceeding 500 m/s. We investigate another approach to increase domain wall velocities, using high frequency surface acoustic waves to create standing strain waves in a 3 micron wide strip of magnetic film with perpendicular anisotropy. Our measurements, at a resonant frequency of 248.8 MHz, indicate that domain wall velocities increase substantially, even at relatively low applied voltages. Our findings suggest that the strain wave …


Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich Jan 2021

Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich

Physics Faculty Publications

We report numerical simulations of a trapped elastic vortex driven by a strong ac magnetic field H(t)=Hsinωt parallel to the surface of a superconducting film. The surface resistance and the power dissipated by an oscillating vortex perpendicular to the film surface were calculated as functions of H and ω for different spatial distributions, densities, and strengths of pinning centers, including bulk pinning, surface pinning, and cluster pinning. Our simulations were performed for both the Bardeen-Stephen viscous vortex drag and the Larkin-Ovchinnikov (LO) drag coefficient η(v) decreasing with the vortex velocity v. The local residual surface resistance Ri(H) …


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …


Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto Jan 2021

Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto

Title III Professional Development Reports

While the ongoing global pandemic continues to affect our everyday lives, researchers in Science, Technology, Engineering and Math found a way to come together at the American Physical Society (APS) March Meeting 2021. The conference was online-only and had more than 11,000 registered attendants who actively participated in the program during March 14- 19, 2021.