Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

2018

Institution
Keyword
Publication

Articles 1 - 30 of 34

Full-Text Articles in Physics

Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger Dec 2018

Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger

UNLV Theses, Dissertations, Professional Papers, and Capstones

X-ray induced damage is generally considered a nuisance, but in the field of Useful Hard X-ray Photochemistry we harness the highly ionizing and penetrating properties of hard X-rays (> 7 keV) to initiate novel photochemical decomposition and synthesis at ambient and extreme conditions. Preliminary experiments suggest that the energy of irradiating photons and the sample pressure play roles in determining the nature of X-ray induced damage. Here, we present the X-ray energy dependence of damage induced in strontium oxalate, strontium nitrate, and barium nitrate, as well as the pressure dependence of X-ray induced damage of strontium oxalate. Our results indicate …


Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao Dec 2018

Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao

Arts & Sciences Electronic Theses and Dissertations

Two-dimensional (2D) materials with single or a few atomic layers, such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs), and the heterostructures or one-dimensional (1D) nanostructures they form, have attracted much attention recently as unique platforms for studying many condensed-matter phenomena and holds great potentials for nanoelectronics and optoelectronic applications. Apart from their unique intrinsic properties which has been intensively studied for over a decade by now, they also allow external control of many degrees of freedom, such as electrical gating, doping and layer stacking. In this thesis, I present a theoretical study of the electronic and …


Linking Structure And Dynamics In Metallic Liquids: A Combined Experimental And Molecular Dynamics Approach, Robert Ashcraft Dec 2018

Linking Structure And Dynamics In Metallic Liquids: A Combined Experimental And Molecular Dynamics Approach, Robert Ashcraft

Arts & Sciences Electronic Theses and Dissertations

A major outstanding problem in condensed matter physics is the nature of the glass transition, in which a rapidly cooled liquid can bypass the transition into a crystalline state and the liquid structure is "frozen-in" due to kinetic arrest. To characterize the fundamental features behind this transition the liquid, both in the high temperature (equilibrium) and supercooled state, needs to be better understood. By examining the relationship between structure and dynamics a better characterization of the liquid state and a determination of the mechanisms that are ultimately important for the formation of the glass can be gained. In this dissertation, …


Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small Dec 2018

Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for a silicon photovoltaic device which incorporates a nanohair textured p-n junction. The silicon nanowires are etched into a silicon wafer, comprising an epitaxial p-layer on n-substrate, via metal-assisted chemical etching (MACE). The resulting nanowires contain p-n junctions that lie along the length of the vertical nanowires. This construct has the potential to increase the optical bandwidth of a silicon photovoltaic device by allowing a greater amount of short wavelength light to reach the junction. In addition, the MACE method of nanofabrication has the potential for decreasing …


Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou Oct 2018

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou

Doctoral Dissertations

Hydrogels are crosslinked polymeric networks imbibed with aqueous solutions. They undertake dramatic volume changes through swelling and deswelling processes, which can be stimulated by factors like temperature, pH or different chemicals. These unique properties render hydrogels particularly interesting for shape morphing related applications. In this thesis, we focus on the swelling induced deformation of thermally responsive hydrogels with lower critical solution temperatures (LCSTs), including poly(N-isopropylacrylamide) (PNIPAm) and poly(N,N-diethylacrylamide) (PDEAm). Particularly, benzophenone containing monomers are copolymerized with NIPAm or DEAm to create photocrosslinkable temperature-responsive polymers, which allows fabrication of hydrogels with controlled shapes and crosslinking …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Ultra-Low Temperature Properties Of Correlated Materials, Seyed Mohammad Ali Radmanesh Aug 2018

Ultra-Low Temperature Properties Of Correlated Materials, Seyed Mohammad Ali Radmanesh

University of New Orleans Theses and Dissertations

Abstract

After the discovery of topological insulators (TIs), it has come to be widely recognized that topological states of matter can actually be widespread. In this sense, TIs have established a new paradigm about topological materials. Recent years have seen a surge of interest in topological semimetals, which embody two different ways of generalizing the effectively massless electrons to bulk materials. Dirac and, particularly, Weyl semimetals should support several transport and optical phenomena that are still being sought in experiments. A number of promising experimental results indicate superconductivity in members of half-Hesuler semimetals which realize the mixing singlet and triplet …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib Jul 2018

Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib

Doctoral Dissertations

Interaction of charged macromolecules among themselves and with charged interfaces in salty aqueous medium is a common phenomenon prevalent in biology and synthetic systems. We have addressed several inter-related issues in this general context. First we present a theory of adsorption of polyelectrolytes on the interior and exterior surfaces of a charged spherical vesicle. We derive the critical adsorption condition and the density profile of the polymer in terms of various characteristics of the polymer, vesicle, and the solution, such as the length and charge density of polymer, the radius and charge of the vesicle, the salt concentration of the …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


The Effect Of Processing Conditions On The Energetic Diagram Of Cdte Thin Films Studied By Photoluminescence, Shamara P. Collins Jul 2018

The Effect Of Processing Conditions On The Energetic Diagram Of Cdte Thin Films Studied By Photoluminescence, Shamara P. Collins

USF Tampa Graduate Theses and Dissertations

The photovoltaic properties of CdTe-based thin films depend on recombination levels formed in the CdTe layer and at the heterojunction. The localized states are resultant of structural defects (metal sublattice, chalcogen sublattice, interstitial), controlled doping, deposition process, and/or post-deposition annealing. The photoluminescence study of CdTe thin films, from both the bulk and heterojunction, can reveal radiative states due to different defects or impurities. Identification of defects allows for potential explanation of their roles and influence on solar cell performance. A thorough understanding of the material properties responsible for solar cell performance is critical in further advancing the efficiency of devices. …


Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang May 2018

Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang

Dissertations

Multiferroics are a class of materials which possess both magnetic and electrical polarization with possible coupling between them. They show promise to enable new sensors and data storage devices with novel features, such as the possibility of writing polarization bits with magnetic fields at low power. The coexisting magnetic and ferroelectric order parameters are usually weakly coupled, preventing practical use. The development and study of new classes of materials with large magnetoelectric couplings is of high importance. Understanding the structure of these materials is key to this effort.

As one class of these systems, the RX3(BO3)4 has …


Investigation Of The Effects Of Harmful Radiation On Type-Ii Strained Layer Superlattice Focal Plane Arrays Operated In The Long Wave Infrared, Patrick Fumo May 2018

Investigation Of The Effects Of Harmful Radiation On Type-Ii Strained Layer Superlattice Focal Plane Arrays Operated In The Long Wave Infrared, Patrick Fumo

Electrical Engineering Theses and Dissertations

In-situ exposure of InAs/InAsSb strained layer superlattice focal plane arrays to gamma-rays revealed the possibility of a detector capable of imaging through a total ionizing dose event. Two long wave infrared focal plane arrays were exposed to a Co60 source at dose rates of 60 Rads/s and 70 Rads/s in incremental steps up to a total accumulated dose of 30 kRads. The first device showed no degradation in dark current density with accumulated dose while the second device tested showed a small increase up to 1 kRad and minimal increases with subsequent dose steps. The primary imaging defect in …


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck May 2018

Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck

Senior Theses

The field of thermoelectrics has many applications, and more are found in everyday systems. From its current studies, it is apparent that improving the figure of merit zT (which defines a good thermoelectric material) is important in the effectiveness of power generation. Another important part of thermoelectrics is the duality of these devices. They can both move heat and generate power, depending on their role in the system. In this thesis research, a process was made to test these thermoelectric relationships for a few Peltier devices in order to understand their efficiencies and what systems they can be applied to.


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang May 2018

The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang

Graduate Theses and Dissertations

One of the objectives of this thesis work was to investigate the cathode performance of lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries (LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) sheet using graphene sheet coating on its cathode.

The results of this work show that adding graphene powder improved the performance of LiCoO¬2 as a cathode material. With the incorporation of different weight percentages of graphene powder, the LiBs showed distinct changes in their charging …


Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu May 2018

Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu

Graduate Theses and Dissertations

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in atomic-like energy levels as well as size-dependent electrical and optical properties. Self-assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-established fabrication techniques and versatile optical properties. This dissertation presents the photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown by molecular beam epitaxy, are used in this study. Morphology of these samples was examined using atomic force …


Computational Discovery Of Energetic Polynitrogen Compounds At High Pressure, Brad A. Steele Apr 2018

Computational Discovery Of Energetic Polynitrogen Compounds At High Pressure, Brad A. Steele

USF Tampa Graduate Theses and Dissertations

High-nitrogen-content energetic compounds containing multiple N-N bonds are an attractive alternative towards developing new generation of environmentally friendly, and more powerful energetic materials. High-N content translates into much higher heat of formation resulting in much larger energy output, detonation pressure and velocity upon conversion to large amounts of non-toxic, strongly bonded N2 gas. This thesis describes recent advances in the computational discovery of group-I alkali and hydrogen polynitrogen materials at high pressures using powerful first-principles evolutionary crystal structure prediction methods. This is highlighted by the discovery of a new family of materials that consist of long-sought after all-nitrogen N􀀀 5 …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Magnetic And Catalytic Properties Of Transition Metal Doped Mos2 Nanocrystals, Luis Martinez Jan 2018

Magnetic And Catalytic Properties Of Transition Metal Doped Mos2 Nanocrystals, Luis Martinez

Open Access Theses & Dissertations

Magnetism and catalytic activity of nanoscale layered two-dimensional (2D) transition metal dichalcogenides (TMDs) have gained an increasing research interest in the recent past. To broaden the current knowledge and understanding on this subject, in this work, together with my collaborators, I study the magnetic and electrocatalytic properties of hydrothermally grown pristine and transition metal doped (10% of Co, Ni, Fe and Mn) 2H-MoS2 nanosheets/nanocrystals (NCs), with the particle size of 25-30 nm. A broad range of experimental measurements such as x-ray diffraction, transmission electron microscopy, x-ray photo absorption spectroscopy, Raman spectroscopy, magnetic, catalytic and electron spin resonance have been employed …


Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov Jan 2018

Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov

Theses and Dissertations

This thesis devoted to the experimental studies of yellow and blue luminescence (YL and BL relatively) bands in Gallium Nitride samples doped with C and Si. The band BLC was at first observed in the steady-state photoluminescence spectrum under high excitation intensities and discerned from BL1 and BL2 bands appearing in the same region of the spectrum. Using the time-resolved photoluminescence spectrum, we were able to determine the shape of the BLC and its position at 2.87 eV. Internal quantum efficiency of the YL band was estimated to be 90\%. The hole capture coefficient of the BLC …