Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

The Effect Of Plasma On Graphene Quality In An Inductively Couple Plasma Chemical Vapor Deposition Reactor, Brendan Coyne May 2017

The Effect Of Plasma On Graphene Quality In An Inductively Couple Plasma Chemical Vapor Deposition Reactor, Brendan Coyne

Undergraduate Research & Mentoring Program

Despite continued interest in research and application development, full scale graphene production is still limited by many factors including prohibitively high growth temperature requirements. Extremely high quality graphene growth is possible at high temperatures using chemical vapor deposition (CVD). Use of an inductively coupled plasma chemical vapor deposition (ICP CVD) reactor with the benefit of precursor gas decomposition through plasma generation, may provide possibility to reduce growth temperature. Herein, we report plasma’s effects on graphene growth by comparing growths of increasing power supplied to plasma generation and changes in precursor gas ratios. Plasma composition was characterized by ultraviolet and visible …


Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder Oct 2016

Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

Large droplets and puddles jump spontaneously from sufficiently hydrophobicsurfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such “drop shooters” as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical …


More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder Mar 2016

More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

A variety of contemplative demonstrations concerning intermediate-to-large length scale capillary fluidic phenomena were made possible by the brief weightless environment of a drop tower (Wollman and Weislogel in Exp Fluids 54(4):1, 2013). In that work, capillarity-driven flows leading to unique spontaneous droplet ejections, bubble ingestions, and multiphase flows were introduced and discussed. Such efforts are continued herein. The spontaneous droplet ejection phenomena (auto-ejection) is reviewed and demonstrated on earth as well as aboard the International Space Station. This technique is then applied to novel low-g droplet combustion where soot tube structures are created in the wakes of burning drops. …


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …


Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei Oct 2013

Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei

Physics Faculty Publications and Presentations

ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. …


A Mean Curvature Model For Capillary Flows In Asymmetric Containers And Conduits, Yongkang Chen, Noël Tavan, Mark M. Weislogel Aug 2012

A Mean Curvature Model For Capillary Flows In Asymmetric Containers And Conduits, Yongkang Chen, Noël Tavan, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during "zero gravity" experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either “connected” or "disconnected." For the connected …


Fundamental Properties Of Functional Zinc Oxide Nanowires Obtained By Electrochemical Method And Their Device Applications, Athavan Nadarajah Jan 2012

Fundamental Properties Of Functional Zinc Oxide Nanowires Obtained By Electrochemical Method And Their Device Applications, Athavan Nadarajah

Dissertations and Theses

We report on the fundamental properties and device applications of semiconductor nanoparticles. ZnO nanowires and CdSe quantum dots were used, prepared, characterized, and assembled into novel light-emitting diodes and solar cells. ZnO nanowire films were grown electrochemically using aqueous soluble chloride-based electrolytes as precursors at temperatures below 90° C. Dopants were added to the electrolyte in the form of chloride compounds, which are AlCl3, CoCl2, CuCl2, and MnCl2. The optical, magnetic, and structural properties of undoped and transition-metal-ion doped ZnO nanowires were explored. Our results indicate that the as-grown nanowire structures have …


Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel Apr 2009

Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

We analyze the effect of gravity on capillary flows in sharp corners. We consider gravity perpendicular and parallel to the channel axis. We analyze both steady and unsteady flows. In the steady analysis the main result is a closed form expression for the flow rate as a function of the two gravity components. Good agreement with steady experiments is offered as support of the model. The unsteady analysis is restricted to “small” values of the two gravity parameters and is accomplished using a similarity formulation. The similarity coefficients of the gravity corrections are fully determined by the coefficients of the …


Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail Jan 2009

Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail

Physics Faculty Publications and Presentations

The Crystallography Open Database (COD), which is a project that aims to gather all available inorganic, metal–organic and small organic molecule structural data in one database, is described. The database adopts an openaccess model. The COD currently contains 80,000 entries in crystallographic information file format, with nearly full coverage of the International Union of Crystallography publications, and is growing in size and quality.


A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula Sep 2008

A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula

Mechanical and Materials Engineering Faculty Publications and Presentations

A scaling of the two-dimensional Laplacian operator is demonstrated for certain solutions (at least) to Poisson’s equation. It succeeds by treating the operator as a single geometric scale entity. The belated and rather subtle method provides an efficient assessment of the geometrical dependence of the problem and is preferred when practicable to the hydraulic diameter or term-by-term scaling for slender fully developed laminar flows. The improved accuracy further reduces the reliance of problems on widely varying numerical data or cumbersome theoretical forms and improves the prospects of exact or approximate theoretical analysis. Simple example problems are briefly described that demonstrate …


Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin Nov 2006

Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin

Mechanical and Materials Engineering Faculty Publications and Presentations

The problem of low-gravity isothermal capillary flow along interior corners that are rounded is revisited analytically in this work. By careful selection of geometric length scales and through the introduction of a new geometric scaling parameter Tc, the Navier–Stokes equation is reduced to a convenient∼O(1) form for both analytic and numeric solutions for all values of corner half-angle α and corner roundedness ratio λ for perfectly wetting fluids. The scaling and analysis of the problem captures much of the intricate geometric dependence of the viscous resistance and significantly reduces the reliance on numerical data compared with several previous solution methods …


Capillary Flow In Interior Corners: The Infinite Column, Mark M. Weislogel Nov 2001

Capillary Flow In Interior Corners: The Infinite Column, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

Capillary flow of a sinusoidally perturbed liquid column in an interior corner of infinite extent is solved using lubrication theory. Due primarily to the length scales selected to nondimensionalize the momentum equation, an analytic time scale governing the settling of the perturbation is determined. The time scale, which is shown to be independent of a steady base state flow, proves useful in rapidly predicting transients for surface settling in certain liquid-bearing tanks of spacecraft employing interior corners for fluids management purposes. The asymptotic analysis is extended to address flows along interior corners whose faces are slightly nonplanar. The generalized formulation …


Capillary Surfaces In An Exotic Container: Results From Space Experiments, Paul Concus, Robert Finn, Mark M. Weislogel Sep 1999

Capillary Surfaces In An Exotic Container: Results From Space Experiments, Paul Concus, Robert Finn, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

Experimental results from the Interface Configuration Experiment (ICE) performed aboard the Space Shuttle and the Mir Space Station are reported. The experiment concerns fluid interfaces in certain ‘exotic’ containers in a low-gravity environment. These containers are rotationally symmetric and have the property that for given contact angle and liquid volume, a continuum of distinct rotationally symmetric equilibrium configurations can appear, all of which have the same mechanical energy. These symmetric equilibrium configurations are unstable, in that deformations that are not rotationally symmetric can be shown mathematically to yield configurations with lower energy. It is found experimentally, in confirmation of mathematical …