Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves Jan 2014

Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves

Graduate College Dissertations and Theses

When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a superfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the superfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where …


Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish Jan 2014

Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish

Graduate College Dissertations and Theses

In low dimensional systems, electron correlation effects can often be enhanced. This can be vital since these effects not only play an important role in the study of many-electron physics, but are also useful in designing new materials for various applications. Since its isolation from graphite in 2004, graphene, a two dimensional sheet of carbon atoms, has drawn considerable interest due to its remarkable properties. In the past few years, research has moved on from single to bi-, dual- and multi-layer graphene systems, each displaying their own multitudes of intriguing properties. In particular, multi-layer systems that are electronically decoupled, but …


Segregation Of Particles Of Variable Size And Density In Falling Suspension Droplets, Melissa Kathleen Faletra Jan 2014

Segregation Of Particles Of Variable Size And Density In Falling Suspension Droplets, Melissa Kathleen Faletra

Graduate College Dissertations and Theses

The problem of the falling under gravity suspension droplet was examined for cases where the droplet contains particles with different densities and different sizes. Cases examined include droplets composed of uniform-size particles with two different densities, of uniform-density particles of two different sizes, and of a distribution of particles of different densities. The study was conducted using both simulations based on Oseenlet particle interactions and laboratory experiments. It is observed that when the particles in the suspension droplet have different sizes and densities, an interesting segregation phenomenon occurs in which lighter/smaller particles are transported downward with the droplet and preferentially …