Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Performance Analysis Of A Hybrid Raman Optical Parametric Amplifier In The O- And E-Bands For Cwdm Pons, Sasanthi Peiris, Nicolas Madamopoulos, Neophytos A. Antoniades, Dwight Richards, Roger Dorsinville Dec 2014

Performance Analysis Of A Hybrid Raman Optical Parametric Amplifier In The O- And E-Bands For Cwdm Pons, Sasanthi Peiris, Nicolas Madamopoulos, Neophytos A. Antoniades, Dwight Richards, Roger Dorsinville

Publications and Research

We describe a hybrid Raman-optical parametric amplifier (HROPA) operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM) passive optical networks (PONs). We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well …


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy Oct 2014

Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy

Dissertations, Theses, and Capstone Projects

This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver …


Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach Oct 2014

Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium and sodium electrode materials for advanced rechargeable batteries. Three projects are described in this thesis. The first two projects involve 6Li, 7Li and 31P NMR studies of two cathode materials for advanced rechargeable batteries. The third project is a study of sodium titanate cathode materials for Na-ion batteries, where 1H, 7Li, and 23Na static and magic angle spinning NMR were used in order to obtain detailed information on the chemical environments.


Dynamics Of Nanoparticles In Fluids And At Interfaces, Weikang Chen Oct 2014

Dynamics Of Nanoparticles In Fluids And At Interfaces, Weikang Chen

Dissertations, Theses, and Capstone Projects

In this thesis, we use molecular dynamics simulation to study three basic behaviors or properties of nanoparticles: deposition during droplets evaporation, slip boundary condition and Brownian motion. These three problems address the need for an in-depth understanding of the dynamics of nanoparticles in fluids and at interfaces. In the first problem, evaporation of the droplets dispersed with particles, we investigated the distribution of evaporative flux, inner flow field, density and temperature. And we use these numerical experiments to check on our hydrodynamic theory of the "coffee ring" phenomenon. The simulations reveal the connection between the particle interactions and the deposit …


Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai Oct 2014

Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai

Dissertations, Theses, and Capstone Projects

Structural, optical and electrical properties of zinc oxide (ZnO), aluminum nitride (AlN), and lutetium ferrite (LuFe2O4) have been investigated. Temperature dependent Hall Effect measurements were performed between 80 and 800 K for phosphorus (P) and arsenic (As) doped ZnO thin films grown on c-plane sapphire substrate by RF magnetron sputtering. These samples exhibited n-type conductivity throughout the temperature range with carrier concentration of 3.85 × 10 16 cm-3 and 3.65 × 10 17 cm-3 at room temperature for P-doped and As-doped ZnO films, respectively. The Arrhenius plots of free electron concentration of those doped samples showed …