Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu Jan 2004

Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu

Bioelectrics Publications

Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Direct current glow discharges have been operated in atmospheric air by using 100 μm microhollow cathode discharges as plasma cathodes. The glow discharges were operated at currents of up to 22 mA, corresponding to current densities of 3.8 A/cm2 and at average electric fields of 1.2 kV/cm. Electron densities in the glow are in the range from 1012 to 1013  cm−3. Varying the current of the microhollow cathode discharge allows us to control the current in the atmospheric pressure glow discharge. Large volume atmospheric pressure air plasmas can be generated by operating microhollow cathode discharges …


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce Jan 1995

Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce

Bioelectrics Publications

We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low‐energy phototransistor application for …


Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …


Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach Jan 1991

Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach

Bioelectrics Publications

The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, …