Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Dielectric Barrier Discharge

Articles 1 - 2 of 2

Full-Text Articles in Physics

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Absolute Nitrogen Atom Density Measurements By Two-Photon Laser-Induced Fluorescence Spectroscopy In Atmospheric Pressure Dielectric Barrier Discharges Of Pure Nitrogen, Et-Touhami Es-Sebbar, Christian Sarra-Bournet, Nicolas Naudé, Françoise Massines, Nicolas Gherardi Oct 2009

Absolute Nitrogen Atom Density Measurements By Two-Photon Laser-Induced Fluorescence Spectroscopy In Atmospheric Pressure Dielectric Barrier Discharges Of Pure Nitrogen, Et-Touhami Es-Sebbar, Christian Sarra-Bournet, Nicolas Naudé, Françoise Massines, Nicolas Gherardi

Dr. Et-touhami Es-sebbar

In this paper, two-photon absorption laser induced fluorescence spectroscopy is used to follow the nitrogen atom density in flowing dielectric barrier discharges fed with pure nitrogen and operating at atmospheric pressure. Two different dielectric barrier discharge regimes are investigated: the Townsend regime, which is homogeneous although operating at atmospheric pressure, and the more common filamentary regime. In both regimes, densities as high as 3x1014 /cm3 are detected. However, the N atoms kinetic formation depends on the discharge regime. The saturation level is reached more rapidly with a filamentary discharge. For a given discharge regime, the N atom density depends strongly …