Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Accurate Calibration Of The Four-Detector Photopolarimeter With Imperfect Polarizing Optical Elements, R. M.A. Azzam, Ali G. Lopez Oct 1989

Accurate Calibration Of The Four-Detector Photopolarimeter With Imperfect Polarizing Optical Elements, R. M.A. Azzam, Ali G. Lopez

Electrical Engineering Faculty Publications

The first three columns of the instrument matrix A of the four-detector photopolarimeter (FDP) are determined by Fourier analysis of the output current vector I(P) as a function of the azimuth angle P of the incident linearly polarized light. Therefore 12 of the 16 elements of A are measured free of the imperfections of the (absent) quarter-wave retarder (QWR). The effect of angular beam deviation by the polarizer is compensated for by taking the average, (1/2) [I(P) + I(P + 180°)], of the FDP output at 180°-apart, optically equivalent, angular positions of the polarizer. The remaining fourth column of A …


Analytical Determination Of The Complex Dielectric Function Of An Absorbing Medium From Two Angles Of Incidence Of Minimum Parallel Reflectance, R. M.A. Azzam Aug 1989

Analytical Determination Of The Complex Dielectric Function Of An Absorbing Medium From Two Angles Of Incidence Of Minimum Parallel Reflectance, R. M.A. Azzam

Electrical Engineering Faculty Publications

The real and imaginary parts of the complex dielectric function (or complex refractive index) of an opaque substrate or a thick film can be determined from two pseudo-Brewster angles measured in two transparent incidence media of different refractive indices. This two-angle method is simple in that it involves no photometric or polarimetric analysis and in that the solution for the optical properties in terms of the measured angles is explicit, analytical, and direct (i.e. noniterative). The two-angle method is demonstrated for an opaque TiN film on a Cleartran ZnS substrate as a specific example. The effect of angle-of-incidence errors on …


Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko Jan 1989

Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko

Electrical & Computer Engineering Faculty Publications

Persistent photoconductivity in copper-compensated, silicon-doped semi-insulating gallium arsenide with a time constant as large as 30 µs has been excited by sub-band-gap laser radiation of photon energy greater than 1 eV. This photoconductivity has been quenched on a nanosecond time scale by laser radiation of photon energy less than 1 eV. The proven ability to turn the switch conductance on and off on command, and to scale the switch to high power could make this semiconductor material the basis of an optically controlled pulsed-power closing and opening switch.


Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern Jan 1989

Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern

Electrical & Computer Engineering Faculty Publications

Silicon-doped n-type gallium arsenide crystals, compensated with diffused copper, were studied with respect to their application as photoconductive, high-power closing switches. The attractive features of GaAs:Cu switches are their high dark resistivity, their efficient activation with Nd:YAG laser radiation, and their microsecond conductivity decay time constant. In the authors' experiment, electric fields are high as 19 kV/cm were switched, and current densities of up to 10 kA/cm2 were conducted through a closely compensated crystal. At field strengths greater than approximately 10 kV/cm, a voltage `lock-on' effect was observed.