Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Regulating Self-Organizing Nanostructures Via External Mechanism, Jiangyu Li, Q. G. Du, Stephen Ducharme Nov 2008

Regulating Self-Organizing Nanostructures Via External Mechanism, Jiangyu Li, Q. G. Du, Stephen Ducharme

Stephen Ducharme Publications

Self-organizing nanostructures are ubiquitous in both natural and synthetic materials. They are not only appealing scientifically, by revealing the intrinsic atomic and molecular interactions that might be difficult to detect otherwise, but may also hold the key for the development of novel functional structures and devices. For their technological potential to be fully realized, the size, morphology, and distribution of the self-organizing nanostructures must be regulated. In this paper, we investigate the principles under which the self-organizing nanostructures can be regulated via external mechanisms. Using nanomesa and nanowell formation in polyvinylidene fluoride trifluoroethylene copolymer film as an example, we demonstrate …


Interface Effects In Spin-Polarized Metal/Insulator Layered Structures, Julian P. Velev, Peter A. Dowben, Evgeny Y. Tsymbal, Stephen J. Jenkins, A. N. Caruso Sep 2008

Interface Effects In Spin-Polarized Metal/Insulator Layered Structures, Julian P. Velev, Peter A. Dowben, Evgeny Y. Tsymbal, Stephen J. Jenkins, A. N. Caruso

Evgeny Tsymbal Publications

Recent advances in thin-film deposition techniques, such as molecular beam epitaxy and pulsed laser deposition, have allowed for the manufacture of heterostructures with nearly atomically abrupt interfaces. Although the bulk properties of the individual heterostructure components may be well-known, often the heterostructures exhibit novel and sometimes unexpected properties due to interface effects. At heterostructure interfaces, lattice structure, stoichiometry, interface electronic structure (bonding, interface states, etc.), and symmetry all conspire to produce behavior different from the bulk constituents. This review discusses why knowledge of the electronic structure and composition at the interfaces is pivotal to the understanding of the properties of …


Surface Magnetoelectric Effect In Ferromagnetic Metal Films, Chun-Gang Duan, Julian P. Velev, Renat F. Sabirianov, Ziqiang Zhu, Junhao Chu, Sitaram S. Jaswal, Evgeny Y. Tsymbal Sep 2008

Surface Magnetoelectric Effect In Ferromagnetic Metal Films, Chun-Gang Duan, Julian P. Velev, Renat F. Sabirianov, Ziqiang Zhu, Junhao Chu, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

A surface magnetoelectric effect is revealed by density-functional calculations that are applied to ferromagnetic Fe(001), Ni(001), and Co(0001) films in the presence of an external electric field. The effect originates from spin-dependent screening of the electric field which leads to notable changes in the surface magnetization and the surface magnetocrystalline anisotropy. These results are of considerable interest in the area of electrically controlled magnetism and magnetoelectric phenomena.


Charge Order, Dynamics, And Magnetostructural Transition In Multiferroic Lufe2o4, X. S. Xu, M. Angst, T. V. Brinzari, R. P. Hermann, J. L. Musfeldt, A. D. Christianson, D. Mandrus, B. C. Sales, S. Mcgill, J. -W. Kim, Z. Islam Jan 2008

Charge Order, Dynamics, And Magnetostructural Transition In Multiferroic Lufe2o4, X. S. Xu, M. Angst, T. V. Brinzari, R. P. Hermann, J. L. Musfeldt, A. D. Christianson, D. Mandrus, B. C. Sales, S. Mcgill, J. -W. Kim, Z. Islam

Xiaoshan Xu Papers

We investigated the series of temperature and field-driven transitions in LuFe2O4 by optical and Mossbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in this multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the ‘‘order by fluctuation’’ mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low-temperature monoclinic distortion that can be driven by both temperature and magnetic field.


Photoconductivity In Bifeo3 Thin Films, S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. S. Xu, J. L. Musfeldt Jan 2008

Photoconductivity In Bifeo3 Thin Films, S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. S. Xu, J. L. Musfeldt

Xiaoshan Xu Papers

The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17 eV, a direct gap (2.667±0.005 eV at 300 K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100 mW/cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1 Torr. Large increases in photoconductivity are observed in light.


Oligo(Vinylidene Fluoride) Langmuir-Blodgett Films Studied By Spectroscopic, Rafal Korlacki, J. Travis Johnston, Jihee Kim, Stephen Ducharme, Daniel W. Thompson, Vladimir M. Fridkin, Zhongxin Ge, James M. Takacs Jan 2008

Oligo(Vinylidene Fluoride) Langmuir-Blodgett Films Studied By Spectroscopic, Rafal Korlacki, J. Travis Johnston, Jihee Kim, Stephen Ducharme, Daniel W. Thompson, Vladimir M. Fridkin, Zhongxin Ge, James M. Takacs

Stephen Ducharme Publications

Thin films of amphiphilic vinylidene fluoride oligomers prepared by Langmuir–Blodgett deposition on silicone substrates were investigated by comparing experimental and theoretical mid-infrared (IR) spectra. The experimental spectra were obtained using infrared spectroscopic ellipsometry. Theoretical spectra were calculated using density functional theory. Excellent correspondence of major IR bands in both data sets shows that the molecular backbone is oriented with the long axis normal to the substrate plane. This is in contrast to poly vinylidene fluoride[1] LB films, in which the polymer chains are parallel to the substrate.


Optical Band Gap Of Bifeo3 Grown By Molecular-Beam Epitaxy, J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, D. G. Schlom Jan 2008

Optical Band Gap Of Bifeo3 Grown By Molecular-Beam Epitaxy, J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, D. G. Schlom

Xiaoshan Xu Papers

BiFeO3 thin films have been deposited on (001) SrTiO3 substrates by adsorption-controlled reactive molecular-beam epitaxy. For a given bismuth overpressure and oxygen activity, single-phase BiFeO3 films can be grown over a range of deposition temperatures in accordance with thermodynamic calculations. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with w rocking curve full width at half maximum values as narrow as 29 arc sec (0.008°). Multiple-angle spectroscopic ellipsometry reveals a direct optical band gap at 2.74 eV for stoichiometric as well as 5% bismuth-deficient single-phase BiFeO3 films.