Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physics

Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England May 2023

Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England

Theses and Dissertations

This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow …


Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer Jan 2023

Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer

Theses and Dissertations

Axisymmetric Drop Shape Analysis (ADSA) is a technique commonly used to determine surface or interfacial tension. Applications of traditional ASDA methods to process analytical technologies are limited by computational speed and image quality. Here, we address these limitations using a novel machine learning approach to analysis. With a convolutional neural network (CNN), we were able to achieve an experimental fit precision of (+/-) 0.122 mN/m in predicting the surface tension of drop images at a rate of 1.5 ms^-1 versus 7.7 s^-1, which is more than 5,000 times faster than the traditional method. The results are validated on real images …


Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero Sep 2022

Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero

Theses and Dissertations

Quantum computers are beset by errors from a variety of sources. Although quantum error correction and detection codes have been developed since the 1990s, these codes require mid-circuit measurements in order to operate. In order to avoid these measurements we have developed a new error detection code that only requires state collapses at the end of the circuit, which we call no ancilla error detection (NAED). We investigate some of the mathematics behind NAED such as which codes can detect which errors. We then run NAED on three separate types of circuits: Greenberger–Horne–Zeilinger circuits, phase dependent circuits, and a quantum …


Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy Jan 2022

Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy

Theses and Dissertations

The production of ordinary Portland cement (OPC) is responsible for ~8% of all man-made CO2 emissions. Unfortunately, due to the continuous increase in the number of construction projects, and since virtually all projects depend on hardened cement from the hydration of OPC as the main binding material, the production of OPC is not expected to decrease. Alkali-activated cement produced from the alkaline activation of byproducts of industries, such as iron and coal industries, or processed clays represents a potential substitute for OPC. However, the interaction of the reaction products of AAC with corrosive ions from the environment, such as Cl-, …


Error Detection In Quantum Algorithms, Simeon R. Hanks Mar 2021

Error Detection In Quantum Algorithms, Simeon R. Hanks

Theses and Dissertations

Quantum computers need to be able to control highly entangled quantum states in the presence of environmental perturbations that lead to errors in calculations. Progress in superconducting qubits has enabled the development of computers capable of running small quantum circuits. The current era of Noise Intermediate Scale Quantum computing has a high error rate. To alleviate this error rate we apply an encoding scheme that allows us to remove results with known errors improving the quality of our results. The encoding uses multiple qubits as a single logical qubit and balances the natural tendency of state-of-the-art quantum computers to decohere …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus Aug 2020

Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus

Theses and Dissertations

This paper investigates how the snow-albedo feedback mechanism of the arctic is changing in response to rising climate temperatures. Specifically, the interplay of vegetation and snowmelt, and how these two variables can be correlated. This has the potential to refine climate modelling of the spring transition season. Research was conducted at the ecoregion scale in northern Alaska from 2000 to 2020. Each ecoregion is defined by distinct topographic and ecological conditions, allowing for meaningful contrast between the patterns of spring albedo transition across surface conditions and vegetation types. The five most northerly ecoregions of Alaska are chosen as they encompass …


Qwasi: The Quantum Walk Simulator, Warren V. Wilson Aug 2020

Qwasi: The Quantum Walk Simulator, Warren V. Wilson

Theses and Dissertations

As quantum computing continues to evolve, the ability to design and analyze novel quantum algorithms becomes a necessary focus for research. In many instances, the virtues of quantum algorithms only become evident when compared to their classical counterparts, so a study of the former often begins with a consideration of the latter. This is very much the case with quantum walk algorithms, as the success of random walks and their many, varied applications have inspired much interest in quantum correlates. Unfortunately, finding purely algebraic solutions for quantum walks is an elusive endeavor. At best, and when solvable, they require simple …


Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt Mar 2020

Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt

Theses and Dissertations

As the reliance on satellite data for military and commercial use increases, more effort must be exerted to protect our space-based assets. In order to help increase our space domain awareness (SDA), new approaches to ground-based space surveillance via wavefront sensing must be adopted. Improving phase-unwrapping algorithms in order to assist in phase retrieval methods is one way of increasing the performance in current adaptive optics (AO) systems. This thesis proposes a new phase-unwrapping algorithm that uses a global, gradient-based technique to more rapidly identify and correct for areas of phase wrapping during particular phase retrieval methods. This is beneficial …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


Techniques For Improved Space Object Detection Performance From Ground-Based Telescope Systems Using Long And Short Exposure Images, David J. Becker Aug 2018

Techniques For Improved Space Object Detection Performance From Ground-Based Telescope Systems Using Long And Short Exposure Images, David J. Becker

Theses and Dissertations

Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This research focuses on improving current space object detection algorithms and developing new algorithms …


Automating Mobile Device File Format Analysis, Richard A. Dill Aug 2018

Automating Mobile Device File Format Analysis, Richard A. Dill

Theses and Dissertations

Forensic tools assist examiners in extracting evidence from application files from mobile devices. If the file format for the file of interest is known, this process is straightforward, otherwise it requires the examiner to manually reverse engineer the data structures resident in the file. This research presents the Automated Data Structure Slayer (ADSS), which automates the process to reverse engineer unknown file for- mats of Android applications. After statically parsing and preparing an application, ADSS dynamically runs it, injecting hooks at selected methods to uncover the data structures used to store and process data before writing to media. The resultant …


Efficient Phase Retrieval For Off-Axis Point Spread Functions, Salome Esteban Carrasco Jun 2018

Efficient Phase Retrieval For Off-Axis Point Spread Functions, Salome Esteban Carrasco

Theses and Dissertations

A novel pairing of phase retrieval tools allows for efficient estimation of pupil phase in optical systems from images of point spread functions (PSFs). The phase retrieval algorithm uses correlation of modeled phase in the focal plane to decouple aberrations that are difficult to identify in complex PSFs. The use of a phase kernel that departs from the Fresnel approximation for off-axis PSFs is a more accurate representation of wavefront phase in finite conjugate imaging. The combination of the approximation and phase correlation algorithm can be more efficient and accurate than generic algorithms.


Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti Dec 2013

Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti

Theses and Dissertations

In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging "diffract & destroy" X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of "unsorted" snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive.

It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms …


Estimating Anthropometric Marker Locations From 3-D Ladar Point Clouds, Matthew J. Maier Jun 2011

Estimating Anthropometric Marker Locations From 3-D Ladar Point Clouds, Matthew J. Maier

Theses and Dissertations

An area of interest for improving the identification portion of the system is in extracting anthropometric markers from a Laser Detection and Ranging (LADAR) point cloud. Analyzing anthropometrics markers is a common means of studying how a human moves and has been shown to provide good results in determining certain demographic information about the subject. This research examines a marker extraction method utilizing principal component analysis (PCA), self-organizing maps (SOM), alpha hulls, and basic anthropometric knowledge. The performance of the extraction algorithm is tested by performing gender classification with the calculated markers.


Time Dependent Channel Packet Calculation Of Two Nucleon Scattering Matrix Elements, Brian S. Davis Mar 2010

Time Dependent Channel Packet Calculation Of Two Nucleon Scattering Matrix Elements, Brian S. Davis

Theses and Dissertations

A new approach to calculating nucleon-nucleon scattering matrix elements using a proven atomic time-dependent wave packet technique is investigated. Wave packets containing centripetal barrier information are prepared in close proximity to nuclear well. This is accomplished by first using an analytic equation to determine the wave packets in a suitable intermediate asymptotic state where the centripetal barrier is negligible. Then, the split operator technique is used to propagate the wave packets back to their original positions under the full Hamiltonian. Here, one wave packet is held stationary while the other is allowed to evolve and explore the nuclear well. Scattering …


Type Ii Quantum Computing Algorithm For Computational Fluid Dynamics, James A. Scoville Mar 2006

Type Ii Quantum Computing Algorithm For Computational Fluid Dynamics, James A. Scoville

Theses and Dissertations

An algorithm is presented to simulate fluid dynamics on a three qubit type II quantum computer: a lattice of small quantum computers that communicate classical information. The algorithm presented is called a three qubit factorized quantum lattice gas algorithm. It is modeled after classical lattice gas algorithms which move virtual particles along an imaginary lattice and change the particles’ momentums using collision rules when they meet at a lattice node. Instead of moving particles, the quantum algorithm presented here moves probabilities, which interact via a unitary collision operator. Probabilities are determined using ensemble measurement and are moved with classical communications …


Handwritten Word Recognition Based On Fourier Coefficients, Gary F. Shartle Dec 1993

Handwritten Word Recognition Based On Fourier Coefficients, Gary F. Shartle

Theses and Dissertations

A machine which can read unconstrained words remains an unsolved problem. For example, automatic entry o handwritten documents into a computer is yet to be accomplished. Most systems attempt to segment letters o a word and read words one character at a time. Segmenting a handwritten word is very difficult and often, the confidence of the results is low. Another method which avoids segmentation altogether is to treat each word as a whole. This research investigates the use of Fourier Transform coefficients, computed from the whole word, for the recognition of handwritten words. To test this concept, the particular pattern …