Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Study Of The Long-Term Desorption Of Trichloroethylene From Clay Soils Using Infrared Spectroscopy, Mary P. Stager Dec 1995

Study Of The Long-Term Desorption Of Trichloroethylene From Clay Soils Using Infrared Spectroscopy, Mary P. Stager

Theses and Dissertations

Slow desorption of contaminants from soil presents one of the greatest challenges to modeling contaminant fate and transport and implementing effective remediation technologies. The kinetics of long-term desorption of trichloroethylene (TCE) from powdered clay soils were studied to determine the desorption rates and mechanism. Infrared absorption spectroscopy was used to monitor the concentration of TCE desorbed from contaminated flint clay for 71 hours. Observed gas phase TCE concentrations as a function of time were compared to that predicted by a one-site Langmuir desorption mechanism. The Langmuir model, with a single type of bonding site, did not account for the release …


Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim Jan 1995

Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim

Dissertations, Theses, and Masters Projects

Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of …


First Principles Linear Response Calculations Of Lattice Dynamics, Cheng-Zhang Wang Jan 1995

First Principles Linear Response Calculations Of Lattice Dynamics, Cheng-Zhang Wang

Dissertations, Theses, and Masters Projects

First principles calculations, using the density-functional theory and particularly the local density approximation (LDA), have achieved remarkable success in studying the properties of solid state systems. Although the basic results of these calculations are the electronic structures (eigenvalues, eigenfunctions, etc.) and the total energy of ground state, many other related physical properties can be deduced from them by investigating their response under external perturbations. Using the linear response method with linearized-augmented-plane-wave (LAPW) basis, we have calculated lattice dynamical properties of important semiconductors CuCl, SiC and ferroelectric KNbO{dollar}\sb3.{dollar} CuCl is known to exhibit large anharmonic effects and possibly a complicated multi-well …