Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

West Virginia University

Series

Articles 1 - 2 of 2

Full-Text Articles in Physics

Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan Jan 2018

Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan

Faculty & Staff Scholarship

In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by melting and characterized in order to evaluate its potential for biomedical applications. The results showed that the newly developed alloy presents a very high strength, high plasticity and a low Young's modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The characterization of each specimen was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM), …


Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao Jan 2018

Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao

Faculty & Staff Scholarship

Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydro- genation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn- TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various …